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Supplementary Methods S1. Biospecimen Collection and Clinical Data 

A. Specimen Acquisition 
Sample inclusion criteria 
Biospecimens were collected from newly diagnosed patients with ovarian serous 
adenocarcinoma who were undergoing surgical resection and had received no prior treatment 
for their disease, including chemotherapy or radiotherapy.  All cases had to be of serous 
histology but were collected regardless of surgical stage or histologic grade. Cases were staged 
according to the 1988 FIGO staging system.  Each frozen tumor specimen had to have a 
companion normal tissue specimen, which could be adjacent normal tissue, peripheral 
lymphocytes, or previously extracted germline DNA.  Each tumor specimen was approximately 
1 cm3 in size and weighed between 100mg and 200mg, in general.  Each specimen was 
embedded in optimal cutting temperature (OCT) medium and histologic sections were obtained 
from top and bottom portions for review.  Each case was reviewed by a board‐certified 
pathologist to confirm that the frozen section was histologically consistent with ovarian serous 
adenocarcinoma.  The top and bottom sections had to contain an average of 70% tumor cell 
nuclei with less than 20% necrosis.  Specimens were shipped overnight from one of 15 tissue 
source sites using a cryoport that maintained an average temperature of less then ‐180°C.  The 
tissue source sites contributing biospecimens included Memorial Sloan‐Kettering Cancer 
Center, Washington University in St. Louis, University of Pittsburgh, Mayo Clinic, Duke 
University, Gynecologic Oncology Group, Cedars‐Sinai Medical Center, University of California 
San Francisco, Harvard Medical School, MD Anderson Cancer Center, British Columbia Cancer 
Agency, Fox Chase Cancer Center, Imperial College London, International Genomics 
Consortium, and Roswell Park Cancer Institute.   

Sample processing 
DNA  and  RNA  fractions  were  isolated  from  the  tissue  using  an  AllPrep  DNA/RNA mini  kit 
(Qiagen).  Frozen  tissue  was  homogenized  with  a  Covaris  adaptive  focused  acoustics  tissue 
disruptor. DNA was selectively recovered from the lysate by chromatography on a spin column 
and the column was then washed. DNA was eluted in 0.1X TE buffer and then precipitated with 
1/10 volume of 3M sodium acetate  (pH 5.5) and 2.5 volumes of absolute ethanol. TRIzol was 
added  to  the  flow‐through  from  the  DNA  capture  column,  which  contained  RNA,  and  the 
solution heated at 65°C for 5 minutes. Chloroform was added and the phases were separated 
via  centrifugation. To  isolate microRNA, 10% of  this  total RNA  fraction was mixed with 1/10 
volume 3M sodium acetate (pH 5.5) and 2.5 volumes and absolute ethanol. Ethanol was added 
to the remaining 90% of the aqueous phase to provide appropriate binding conditions for RNA. 
The  sample  was  then  applied  to  an  RNeasy  spin  column,  treated with  DNase  I  to  remove 
residual contaminating DNA, then washed and eluted in 0.1X TE buffer.  

Quality Control of Molecular Analytes  
Matched normal patient DNA was extracted and purified from the blood or tissue using a 
QIAamp DNA Blood Midi Kit/QIAamp Mini Kit from QIAGEN. DNA and RNA from these 
purifications were quantitated by measuring optical density at 260, 280 and 320 nm 
wavelengths. The purity was assessed by the A260 and A280 absorbance ratio. All DNA samples 
were further qualified by agarose gel electrophoresis to confirm molecular weight distributions. 
To estimate the quality of the RNA, we used the RNA 6000 Nano assay on the Agilent 
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Bioanalyzer, which provided two estimates of the integrity of the 28S and 18S ribosomal RNA: 
RIN (RNA Integrity Number) and the 28S/18S ratio. Acceptable values were 28S/18S ratio ≥ 1 or 
RIN ≥7. 

To date, 1020 ovarian cases have been received by the BCR and 564 (55%) have passed quality 
control.  The biospecimens included in this report come from 518 ovarian samples included in 
batches 9, 11‐15, 17‐19, 21, 22, and 24 (Figure S1.1).  For the present analyses, grade 1 and 
FIGO stage I tumors were excluded as they may represent a disease biologically and distinct 
from high‐grade advanced stage ovarian carcinoma.  In total, 22 cases were excluded due to: 
grade 1 (5), stage I (15), wrong diagnostic site (1), previous treatment (1).    

B. Clinical data annotation 

Clinical data collection 
Clinical data were obtained from TSSs through data collection forms.  Data forms were entered 
electronically at the BCR and XML files were generated. The XML files were parsed into flat text 
files at University of North Carolina and posted at the DCC.  Clinical data can be accessed and 
downloaded from the TCGA Data Portal at http://tcga.cancer.gov.  Demographics, 
histopathologic information, treatment details including chemotherapy drugs, doses and routes 
of administration, and outcome parameters were collected.   

Clinical data definitions   
The definitions of most clinical variables were implicit and select variables were defined as 
follows: TUMORRESIDUALDISEASE was defined as the size of residual disease at the conclusion 
of the primary surgical procedure.  This field was used to define surgical cytoreduction as 
optimal or suboptimal. Optimal was defined as no residual disease greater than 1cm and  
included the variable categories of no macroscopic disease (i.e. microscopic residual disease) 
and 1 to 10mm. Suboptimal was defined as residual disease greater than 1cm and  included the 
variable categories of 11 to 20mm and greater than 20mm.  
PRIMARYTHERAPYOUTCOMESUCCESS was defined as the response to treatment determined 
after primary surgery and subsequent adjuvant chemotherapy.  
PERSONNEOPLASMCANCERSTATUS was defined as the last known status of disease.  For the 
purpose of these analyses, the date of surgery was used as a surrogate for the date of initial 
diagnosis, since treatment planning and intervention for these cases undergoing initial surgical 
resection began at that time point.  Overall survival was defined as the interval from the date of 
initial surgical resection to the date of last known contact or death.  Progression free survival 
was defined as the interval from the date of initial surgical resection to the date of progression, 
date of recurrence, or date of last known contact if the patient was alive and has not recurred.  
For the purpose of these analyses, any patient who had died without a date of progression or 
recurrence was excluded from analyses of progression free survival.   

Chemotherapy treatment details were reviewed to identify drugs prescribed for adjuvant 
therapy.  The date of last primary platinum treatment was also determined from the available 
chemotherapy details and included adjuvant therapy and consolidation treatment when given 
consecutively following adjuvant therapy.  The platinum free interval was defined as the 
interval from the date of last primary platinum treatment to the date of progression, date of 
recurrence, or date of last known contact if the patient is alive and has not recurred.  Platinum 
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status was defined as resistant if the platinum free interval was less than six months and the 
patient had progressed or recurred.  Platinum status was defined as sensitive if the platinum 
free interval is six months or greater, there was no evidence of progression or recurrence, and 
the follow‐up interval was at least six months from the date of last primary platinum treatment.  
Patients who have not progressed or recurred and been followed for less than six months from 
the date of last primary platinum treatment were excluded from analyses regarding platinum 
status.   

Clinical data analysis   
Standard statistical tests were used to analyze the clinical data including, but not limited to, X2 
test, Fischer’s exact text, Student’s t test, log‐rank text, and Cox proportional hazard analysis, as 
appropriate.  Descriptive statistics were also included. All statistical tests were two‐sided and 
statistical significance was considered when P < 0.05.  Analyses of clinical data were primarily 
performed using SPSS v.18 (SPSS, Chicago, IL).  Clinical data were available for 488 patients 
included in this report. Key clinical data variables are provided in Table S1.2. 

C. Additional clinical data results 

Demographics and histopathology 
As indicated in the main text and shown in Table S1.1, the characteristic of the TCGA ovarian 
cases reflect the general population of women with advanced ovarian cancer.  The average age 
at diagnosis was 60.2 years, all cases were of serous histology, 73% of the cases were FIGO 
stage IIIC, 16% were FIGO stage IV, 88% were grade 3, and 73% had optimal surgical 
cytoreduction.  

Overall and progression‐free survival 
Univariate correlations between select clinical variables and progression‐free survival (PFS) or 
overall survival (OS) are shown in Table S1.3.  Age at diagnosis was associated with overall 
survival.  Platinum status was associated with both PFS and OS. Stage III and optimal surgical 
cytoreduction both demonstrate a trend toward improved OS.  The median PFS and OS was 
16.7 and 43.4 months for FIGO stage III patients and 14.0 and 32.9 months for FIGO stage IV 
patients, respectively (P = 0.12 for PFS and P = 0.07 for OS).  The median PFS and OS was 16.7 
and 44.2 months for optimally debulked patients and 15.4 and 36.2 months for suboptimally 
debulked patients, respectively (P = 0.34 for PFS and P = 0.06 for OS).  The median OS was 57.9 
months for platinum sensitive patients and 33.2 months for platinum resistant patients (P = 
3.5e‐19).   

In a multivariate analysis shown in Table S1.4, including all clinical variables from Table S1.3, 
age at diagnosis and platinum status were independently associated with OS (HR 1.02, 95% CI: 
1.00‐1.03; HR 3.69, 95% CI: 2.60‐5.21).  Stage and platinum status were independently 
associated with PFS (HR 0.80, 95% CI: 0.66‐0.96; HR 25.6, 95% CI: 15.9‐41.7).   

Surgical outcome is associated with OS, PFS, and platinum status 
Many recent studies have demonstrated that patients left with microscopic residual disease 
after surgical cytoreduction have an improved outcome when compared with other optimally 
or suboptimally debulked patients1‐4.  We therefore further examined the PFS and OS of the 
TCGA ovarian patients in relation size of residual disease after surgical cytoreduction.  Size of 
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residual disease was microscopic in 90 (21%) cases, between 1 and 10mm in 223 (52%) cases, 
between 11 and 20mm in 30 (7%) cases, and more than 20mm in 89 (21%) cases.  TCGA ovarian 
patients left with microscopic residual disease had improved PFS and OS when compared to 
patients left with optimal, non‐microscopic disease or suboptimal disease (Figure S1.2 and 
Table S1.5).  The median PFS was 21.8 months for patients with microscopic residual disease 
and 15.0 months for patients with more than microscopic residual disease (P = 0.001).  The 
median OS was 57.4 months for patients with microscopic residual disease and 38.1 months for 
patients with more than microscopic residual disease (P = 3e‐4).  Microscopic residual disease 
was found to be independently associated with OS in a multivariate analysis. 

An association between surgical cytoreduction and platinum sensitivity has also been previously 
reported5.   Considering the improved PFS and OS identified in patients with microscopic 
residual disease, we explored the relationship between surgical cytoreduction and platinum 
sensitivity in the TCGA ovarian cases. We found no association between platinum status and 
surgical cytoreduction when defined traditionally as optimal or suboptimal.  However, when 
considering microscopic residual disease separately from other optimally or suboptimally 
debulked patients, there was an association between surgical outcome and platinum status.  
Patients with microscopic residual disease were more likely to be platinum sensitive than 
patients with more than microscopic residual disease (P = 0.02, df=4; P = 0.003, df=2, Odds ratio 
= 3.1, 95%CI: 1.44‐6.68; Table S1.6).  These data suggest that surgical cytoreduction may have a 
direct impact on platinum status.  Logistic regression analyses indicate that microscopic residual 
disease is independently associated with platinum status (P = 0.005). 
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Figures 
Figure S1.1. Biospecimen processing and quality control.   This figure summarized the flow of 
biospecimens from the Tissue Source Sites (TSS) through the Biospecimen Core Resource (BCR) 
and into the molecular analysis pipeline.   
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Figure S1.2. Progression‐free and overall survival as a function of residual disease.  
Progression‐free (A) and overall (B) survival is improved in patients left with microscopic 
residual disease after initial surgical cytoreduction.  Other optimal patients left with more than 
microscopic residual disease do not have improved outcome when compared with suboptimal 
patients. 
 

Table S1.1. Clinical-pathologic characteristics of TCGA ovarian cases* 
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Cohort Training Validation Total 
Number of patients 229 259 488 
Age    
    Mean, years (STD) 
    range 

60.4 (11.5) 
35-87 

60.0 (11.4) 
27-85 

60.2 (11.4) 
27-87 

Tumor stage#    
    II 4 (2%) 20 (8%) 24 (5%) 
    III 180 (79%) 201 (79%) 381 (79%) 
    IV 44 (19%) 35 (14%) 79 (16%) 
Tumor grade^    
    2 12 (6%) 45 (18%) 57 (12%) 
    3 212 (95%) 208 (82%) 419 (88%) 
Number of patients 232 135 367 
Histology    
    Serous 229 (100%) 258 (100%) 487 (100%) 
Surgical outcome    
    Optimal (≤ 1cm) 154 (76%) 159 (69%) 313 (73%) 
    Suboptimal (>1 cm) 48 (24%) 71 (31%) 119 (28%) 
Platinum status    
    Sensitive 92 (65%) 105 (72%) 197 (69%) 
    Resistant 50 (35%) 40 (28%) 90 (31%) 
Recurrent disease    
    No 70 (31%) 67 (26%) 137 (28%) 
    Yes 159 (69%) 190 (74%) 349 (72%) 
Vital status    
    Alive 104 (45%) 111 (44%) 215 (45%) 
    Dead 125 (55%) 143 (56%) 268 (56%) 
Median PFS, months (±SE) 14.9 (1.1) 17.9 (1.1) 16.8 (0.8) 
Median OS, months (±SE) 44.4 (2.7) 41.5 (2.4) 43.6 (2.2) 
Adjuvant chemotherapy regimen    
    Single agent platinum 10 (5%) 2 (1%) 12 (3%) 
    Platinum/Taxane doublet 169 (79%) 156 (75%) 325 (77%) 
    Other platinum doublet 2 (1%) 11(5%) 13 (3%) 
    Platinum/Taxane triplet 32 (15%) 40 (19%) 72 (17%) 
* Numbers do not sum to the total due to unavailable values.  30 samples have been excluded 
as described in supplement. 
#P<0.01, X2 test; ^P<0.001, X2 test 
PFS, progression-free survival; OS, overall survival; STD, standard deviation; SE, standard 
error 
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Table S1.3. Univariate analysis of overall and progression‐free survival for TCGA ovarian cases 

  Progression‐free survival      Overall survival     

  HR  95% CI  P   HR  95% CI  P  

Age (years)  1.00  0.99‐1.01  0.99  1.02  1.01‐1.03  0.002 

Grade, 3 vs 2  1.33  0.95‐1.86  0.10  1.35  0.94‐1.94  0.11 

Stage, III vs IV  0.88  0.75‐1.04  0.13  0.87  0.74‐1.01  0.07 
TCGA cohort,  
training vs validation 

1.05  0.94‐1.19  0.38  0.99  0.88‐1.12  0.91 

Platinum status,  
resistant vs sensitive 

24.28  15.9‐37.1  2.3e‐49  3.94  2.86‐5.43  6.0e‐17 

Surgical outcome, 
optimal vs suboptimal 

0.87  0.66‐1.15  0.34  0.77  0.59‐1.02  0.06 

HR, hazard ratio 
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Table S1.4. Multivariate analysis of overall and progression‐free survival for TCGA ovarian cases.  All 
variables from Table S1.3 were included in the model.  Statistically significant independent 
associations are emphasized in bold.     

  Progression‐free survival      Overall survival     

  HR  95% CI  P   HR  95% CI  P  

Age (years)  1.00  0.99‐1.01  0.88  1.02  1.00‐1.03  0.01 

Grade, 3 vs 2  2.42  0.78‐1.81  0.41  1.12  0.69‐1.81  0.65 

Stage, III vs IV  0.80  0.66‐0.96  0.02  0.96  0.77‐1.20  0.74 
TCGA cohort,  
training vs validation 

1.03  0.90‐1.19  0.66  0.99  0.84‐1.18  0.92 

Platinum status,  
resistant vs sensitive 

25.64  15.9‐41.7  4.9e‐41  3.69  2.60‐5.21  2.0e‐13 

Surgical outcome, 
optimal vs suboptimal 

0.88  0.64‐1.20  0.42  0.93  0.64‐1.36  0.72 

HR, hazard ratio 
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Table S1.5. Progression‐free and overall survival as a function of size of residual disease after surgical 
cytoreduction. 

  Progression‐free survival#  Overall survival# 

Size of residual  Median  95% CI  Median  95% CI 

Microscopic  21.8  19.0‐24.7  57.4  45.8‐69.0 

1‐10mm  15.0  12.5‐17.6  39.0  33.4‐44.6 

11‐20mm  13.0  8.4‐17.5  39.0  31.7‐46.2 

>20mm  15.6  15.6‐17.6  33.7  27.1‐40.2 
#Data is shown in months. 
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Table S1.6. Platinum status as a function of size of residual disease after surgical cytoreduction.# 

Size of residual  Sensitive  Resistant 

Microscopic  47 (84)  9 (16) 

1‐10mm  83 (61)  53 (39) 

11‐20mm  10 (59)  7 (41) 

>20mm  35 (69)  16 (31) 

Microscopic  47 (84)  9 (16) 

More than microscopic*  128 (63)  76 (37) 
#Data expressed as n (%). 

*Includes 1‐10mm, 11‐20mm, and >20mm 
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Supplementary Methods S2: Exome Sequencing 
 
The Genome Center at Washington University 
 
Library Construction 
Whole genome amplified (WGA) DNA samples (3μg) were constructed into Illumina libraries 
according to the manufacturer’s protocol (Illumina Inc, San Diego, CA) with the following 
modifications:  1) DNA was fragmented using Covaris S2 DNA Sonicator (Covaris, Inc. 
Woburn, MA).  Fragment sizes ranged between 100 and 500bp.  2) Illumina adapter-ligated 
DNA was amplified in a single 50μl PCR for five cycles.  3) Solid Phase Reversible 
Immobilization (SPRI) bead cleanup was used to purify the PCR and select for 300-500bp 
fragments.    
 
Exome Capture and Sequencing 
Sequencing libraries were hybridized with a customized version of the Agilent SureSelect All 
Exome v2.0 kit, which targets ~33 Mbp of coding sequence from ~18,500 genes, according to 
the manufacturer’s protocol (1). Illumina library quantification was completed using the KAPA 
SYBR FAST qPCR Kit (KAPA Biosystems, Woburn, MA).   The qPCR result was used to 
determine the quantity of library necessary to produce 180,000 clusters on a single lane of the 
Illumina GAIIx.  Three lanes of 2x100bp paired-end sequence were generated per capture 
library. 
 
BRAC1, BRCA2, and TP53 were also sequenced using ABI 3730. 
 
Alignment, De-duplication, and BAM File Generation 
Illumina reads were mapped to the Ensembl release 45 version of Human NCBI Build 36 using 
BWA (2) v0.5.7 with soft trimming (-q 5). For each sample, individual lane alignments in BAM 
format were merged together using SAMtools (3) r544. Duplicates were marked in the merged 
BAM files by the MarkDuplicates class of Picard (4) v1.17.  Reads with mapping quality of zero, 
or that were marked as duplicates by Picard, were excluded from further analysis. 
 
Sample Identity Verification  
To verify the identity of each BAM file, we compared SAMtools (3) filtered SNP calls with 
high-density SNP array data (Affymetrix) from the Cancer Genome Atlas research consortium 
using a customized Perl script. We required 8x coverage for a SNP genotyped as heterozygous in 
the array data, or 4x for a SNP genotyped as homozygous, to perform the comparison. On 
average across 176 samples, genotypes were compared at ~40,000 SNP positions with >98.5% 
concordance, suggesting that no samples were switched or significantly contaminated. 
 
Somatic Mutation Calling 
We have developed an automated pipeline for comprehensive identification of somatic mutations 
in exome data. Our approach combines the predictions of multiple algorithms: 
 

1.) VarScan 2 (5). A heuristic somatic mutation caller that calls consensus genotypes, 
compares supporting read counts, and assesses the significance between tumor and 
normal using a Fisher’s Exact Test. We applied the following thresholds for somatic 
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mutations: coverage >= 3x, phred base quality >= 15, tumor variant frequency >= 15%, 
normal variant frequency <= 4%, FET p-value < 0.01.   

2.) SomaticSniper. Our previously published (6) somatic mutation caller for whole genome 
resequencing data. We required that somatic mutations have average mapping quality >= 
40, somatic score >= 40, and a tumor consensus genotype that matched the filtered SNP 
consensus for tumor from SAMtools (3).  

3.) GATK (4) IndelGenotyper v2.0. A heuristic indel caller that compares tumor/normal data 
and classifies each variant as germline or somatic. We specified a window size of 300. 

 
SNVs from VarScan and SomaticSniper were merged into a single non-redundant file. To 
remove false positives from paralogous alignments, local mis-alignments, sequencing error, and 
other factors, we filtered SNVs to remove any with strand bias, read position bias, or multiple 
high-quality mismatches in supporting reads. Indels from all three algorithms were merged into a 
single non-redundant file and filtered to remove small events around homopolymers, which are 
likely false positives.  
 
Annotation and Tiering 
We annotated the filtered high confidence somatic mutations using gene structure and UCSC 
annotation information, assigning each mutation to one of four tiers as previously described (6). 
Briefly, Tier 1 mutations alter coding sequence (nonsynonymous, synonymous, splice site, or 
noncoding RNA); Tier 2 mutations affect conserved or regulatory sequences; Tier 3 mutations 
occur in non-repetitive regions of the human genome, and Tier 4 mutations occur in repetitive 
non-coding regions. 
 
Mutation Validation 
All Tier 1 variants reviewed as somatic or ambiguous underwent PCR primer design and 
amplification using DNA from the tumor sample and matched DNA control.  Amplifications 
were performed independently, then pooled together into tumor and normal PCR libraries. Gel 
fractionation was used to remove small fragments from each PCR pool prior to 454 library 
construction and sequencing using Titanium protocols. Read sequences and quality scores were 
extracted from 454 data files using sffinfo (Roche) then aligned to the Ensembl release 45 
version of Human NCBI Build 36 using SSAHA2 (7) with the SAM output option. Reads with 
multiple top-scoring alignments were excluded from further analysis. Alignments were imported 
to BAM format using SAMtools (3). The validation status was determined by comparing tumor-
normal read counts for each allele using VarScan 2 (5). To be validated, sites were required to 
have at least 30 reads with base quality >= 15 (Phred score) in both normal and tumor pools. To 
be validated as Somatic, a variant must have a somatic p-value (a read-count weighted measure 
of the significance of the allele frequency difference between normal and tumor) of less than 
0.01, as calculated by VarScan 2 using Fisher’s Exact Test. A small fraction of sites were 
validated using ABI 3730. 
 
Broad Institute 
 
Library Construction and Exome Capture 
We follow the procedure described by Gnirke et al.(1) adapted for production-scale exome 
capture library construction. Exome targets were generated based on CCDS genes, representing 
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188,260 exons from ~18,500 genes. DNA oligonucleotides were PCR amplified, then transcribed 
in vitro in the presence of biotinylated UTP to generate single•stranded RNA “bait.” Genomic 
DNA from primary tumor and patient•matched blood normal was sheared, ligated to Illumina 
sequencing adapters, and selected for lengths between 200 to 350 bp. This “pond” of DNA was 
hybridized with an excess of bait in solution. The “catch” was pulled down by magnetic beads 
coated with streptavidin, then eluted. 
Resulting exome sequencing libraries from the process described above were sequenced on three 
lanes of an Illumina GA•II sequencer, using 76 bp paired-end reads.    
 
Illumina Sequencing 
Libraries were quantified using a SYBR Green qPCR protocol with specific probes for the ends 
of the adapters. The qPCR assay measures the quantity of fragments properly adapter•ligated 
that are appropriate for sequencing. Based on the qPCR quantification, libraries were normalized 
to 2nM and then denatured using 0.1 N NaOH.  Cluster amplification of denatured templates 
occurred according to the manufacturer’s protocol (Illumina) using V2 Chemistry and V2 
Flowcells (1.4mm channel width). SYBR Green dye was added to all flowcell lanes to provide a 
quality control checkpoint after cluster amplification to ensure optimal cluster densities on the 
flowcells. Flowcells were paired•end sequenced on Genome Analyzer II’s, using V3 
Sequencing•by•Synthesis kits and analyzed with the standard Illumina GAPipeline.  Standard 
quality control metrics including error rates, % passing filter reads, and total Gb produced were 
used to characterize process performance prior to downstream analysis. The Illumina pipeline 
generates data files that contain the reads and qualities.  
  
Sequence Data Processing Pipeline 
The sequencing data•processing pipeline, called “Picard” (http://picard.sourceforge.net/; Fennel 
T. et al., unpublished), developed by the Sequencing Platform at the Broad Institute, starts with 
the reads and qualities produced by the Illumina software for all lanes and libraries generated for 
a single sample (either tumor or normal) and produces, at the end of the pipeline, a single BAM 
file (http://samtools.sourceforge.net/SAM1.pdf) representing the sample. The final BAM file 
stores all reads with well-calibrated qualities together with their alignments to the genome (only 
for reads that were successfully aligned).   
Several of the tools used in these pipelines were developed jointly by the Broad’s Sequencing 
Platform, Medical and Population Genetics Program and the Cancer Program (additional details 
regarding parts of the pipeline focused on germline events, also used for medical and population 
genetics, will be described elsewhere; DePristo et al., submitted).    
Picard consists specifically of four steps (briefly described below): (1) recalibration of base 
qualities, (2) alignment to the genome, (3) aggregation of lane and library data, and (4) marking 
of duplicate reads.   
(1) Base-quality recalibration    
Each base is associated with a Phred-like quality Q score(8)representing the probability that the 
base call is erroneous. The Q score represents –10*log10(Probability of error), rounded to an 
integer value. In order to make sure that Q30 bases indeed have a 1 in a 1000 chance of being 
wrong we used a GATK tool (http://www.broadinstitute.org/gatk) that empirically recalibrates 
the qualities based on the original Q score (generated by the Illumina software), the read•cycle, 
the lane, the tile, the base in question and the preceding base. The original quality scores are also 
kept in the BAM file in the read-level OQ tag.    
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(2) Alignment to the genome   
Alignment is performed using MAQ3 [http://maq.sourceforge.net/] to the NCBI Human 
Reference Genome Build 36.3. The reads in the BAM file are sorted according to their 
chromosomal position.  Unaligned reads are also stored in the BAM file such that all reads that 
passed the Illumina quality filter (PF reads) are kept in the BAM.   
(3) Aggregation of lane- and library-level data   
Multiple lanes and libraries are aggregated into a single BAM per sample. Lane•level BAM files 
are combined to library•level BAM files and these are then combined to sample-level BAM 
files. The BAM files contain read groups that represent the library and lane information. 
Information regarding the read groups appears in the BAM header (see the BAM file 
specifications in http://samtools.sourceforge.net/SAM1.pdf).  
(4) Marking of duplicated reads   
Molecular duplicates are flagged using the MarkDuplicates algorithm from Picard 
(http://picard.sourceforge.net/). The method identifies pairs of reads in which both ends map to 
the exact same genomic position as being multiple reads of the same DNA molecule and hence 
marks all but the first as duplicates.    
The BAM files that are produced by the Picard pipeline are then delivered to dbGaP.  
 
Local Realignment of Indels 
This pre-processing step is performed before actual variant (SNV and short indel) calling. The 
rationale behind the local realignment is that while initial read mappings are usually and mostly 
correct at coarse-grained level (e.g. the overall position of the read on the reference is correct), 
finer details of some alignment can only be determined in the presence of the additional evidence 
from other reads at the locus. This problem manifests itself predominantly where the actual 
sequence contains indels. For instance, single read aligner normally would not place an indel 
near the end of the read. In other cases, a sequencing error in the read may cause an incorrect gap 
opening, etc. In most cases, at the locus with true indel event some alignments will contain the 
indel, and some others will not or will have it misplaced after the initial alignment. In the 
realignment step, we consider only the reads initially mapped into a small interval around 
putative event (hence making the procedure local and computationally tractable), and explicitly 
align them all to either reference or alternative consensus model(s). As a result, we are able to 
refine alignments for a number of reads. 
 
Detection of Single Nucleotide Variations 
Single nucleotide mutation detection for both whole genome and capture data was performed 
using a highly sensitive and specific method called muTector (Cibulskis K. et al, in preparation). 
In brief, muTector consists of three steps:  

(i) Preprocessing the aligned reads in the tumor and normal sequencing data. In this step we 
ignore reads with too many mismatches or very low quality scores since these 
represent noisy reads that introduce more noise than signal.   

(ii) A statistical analysis that identifies sites that are likely to carry somatic mutations with 
high confidence. The statistical analysis predicts a somatic mutation by using two 
Bayesian classifiers – the first aims to detect whether the tumor is non-reference at a 
given site and, for those sites that are found as non-reference, the second classifier 
makes sure the normal does not carry the variant allele. In practice the classification 
is performed by calculating a LOD score (log odds) and comparing it to a cutoff 
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determined by the log ratio of prior probabilities of the considered events. For the 
tumors we calculate  
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Thresholds were chosen for each statistic such that our false positive rate is 
sufficiently low. 

(iii)Post-processing of candidate somatic mutations to eliminate artifacts of next-generation 
sequencing, short read alignment and hybrid capture.  For example, sequence context 
can cause hallucinated alternate alleles but often only in a single direction.  Therefore, 
we test that the alternate alleles supporting the mutations are observed in both 
directions.  

As muTector attempts to call mutations it also generates a coverage file in a wiggle file 
format(9), which indicates for every base whether it is sufficiently covered in the tumor and 
normal to be sensitive enough to call mutations. We currently use cutoffs of at least 14 reads in 
the tumor and at least 8 in the normal (these cutoffs are applied after removing noisy reads in the 
preprocessing step).  
 
Detection of Small Insertion and Deletions 
We have found the local realignment step to be very important for indel calling. Indeed, our 
results indicate that after the initially missing evidence for an indel is recovered through the 
realignment procedure, good specificity and sensitivity can be achieved using simple cutoff and 
filter-based approach. Our current indel calling procedure is implemented in two steps. First, 
high sensitivity calls are made based on count thresholds (minimum coverage, minimum fraction 
of indel-supporting reads at the locus). Second, these high sensitivity calls are filtered based on 
local alignment statistics around the putative event (average number of additional mismatches 
per indel allele-supporting read, average mismatch rate and base quality in a small NQS window 
around the indel). All calls are made in tumor samples and classified as somatic or germline 
based on the presence of any evidence (not necessarily strong enough to make an independent 
call) for the same event in matching normal sample. 
 
Mutation Validation 
Validation of somatic variants, both single nucleotide and short insertions and deletions, was 
performed using Sequenom Mass Spectrometry.  This genotyping technology utilizes 
AssayDesigner v.3.1 software to design PCR and extension primers for low and high multiplex 
SNP and IN/DEL assays.  Oligos were synthesized and mass-spec QCed at Integrated DNA 
Technologies, Inc.  To minimize reagent and labor cost, individual genotyping reactions are 
multiplexed. SNPs are amplified in multiplex PCR reactions consisting of a maximum of twenty-
four loci each. The volume of the PCR reaction is kept exceedingly small (6 μl) and only 10 ng 
of DNA per 24-36 multiplex SNP pool is consumed. 
Following amplification, the Single Base Extension reaction is performed on the Shrimp 
Alkaline Phosphatase treated PCR product using iPLEX enzyme™ and mass-modified 
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terminators™ (Sequenom iPLEX-GOLD reagents kit, San Diego). A small volume (~7 nl) of 
reaction is then loaded onto each position of a 384-well SpectroCHIP preloaded with 7 nl of 
matrix (3-hydroxypicolinic acid). SpectroCHIPs are analyzed in automated mode by a 
MassArray MALDI-TOF Compact system with a solid phase laser mass spectrometer (Bruker 
Daltonics Inc., 2005). The resulting spectra are called by real-time SpectroCaller algorithm and 
analyzed by SpectroTyper v.4.0 software, which combines base calling with the clustering 
algorithm. 
 
Human Genome Center at Baylor College of Medicine 
 
Library Construction 
Whole genome amplified (WGA) DNA samples (5ug) were constructed into SOLiD pre-capture 
libraries according to a modified version of the manufacturer’s protocol (Applied Biosystems, 
Inc.). Briefly, DNA was sheared into fragments approximately 120 bp in size with the Covaris 
S2 or E210 system as per manufacturer instructions (Covaris, Inc. Woburn, MA). Fragments 
were processed through DNA End-Repair (NEBNext End-Repair Module; Cat. No. E6050L) and 
A-tailing (NEBNext dA-Tailing Module; Cat. No. E6053L), followed by purification using a 
QIAquick PCR purification kit (Cat. No. 28106). Resulting fragments were ligated with BCM-
HGSC-designed Truncated-TA (TrTA) P1 and TA-P2 adapters with the NEB Quick Ligation Kit 
(Cat. No. M2200L). Solid Phase Reversible Immobilization (SPRI) bead cleanup (Beckman 
Coulter Genomics, Inc.; Cat. No. A29152) was used to purify the adapted fragments, after which 
nick translation and Ligation-Mediated PCR LM-PCR was performed using Platinum PCR 
Supermix HIFi (Invitrogen; Cat. No.12532-016) and 6 cycles of amplification. Following bead 
purification, PCR products were quantified using PicoGreen (Cat. No. P7589) and their size 
distribution analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500 (Cat. No. 5067-1506). 
Primer sequences and a complete library construction protocol are available on the Baylor 
Human Genome Website 
(http://www.hgsc.bcm.tmc.edu/documents/Preparation_of_SOLiD_Capture_Libraries.pdf). 
 
Exome Capture and DNA Sequencing 
Precapture libraries libraries (2 ug) were hybridized in solution with either NimbleGen SeqCap 
EZ Exome Probes (~26 Mbs of coding sequence from ~17,000 genes), or a custom designed 
solution probe Vcrome1, (~43.9 Mbs of coding sequence from ~23,000), according to the 
manufacturer’s protocol with minor revisions. Specifically, hybridization enhancing oligos 
TrTA-A and SOLiD-B replaced oligos PE-HE1 and PE-HE2 and post-capture LM-PCR was 
performed using 12 cycles. Capture libraries were quantified using PicoGreen (Cat. No. P7589) 
and their size distribution analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500 (Cat. 
No. 5067-1506). Capture efficiency was evaluated by performing a qPCR-based SYBER Green 
assay (Applied Biosystems; Cat. No. 4368708 ) with built-in controls (RUNX2, PRKG1, SMG1, 
and NLK).  Capture library enrichment was estimated at 7 to 9-fold over background.  Captured 
libraries were further processed for sequencing, with approximately 6-12 Gbs of sequence 
generated per capture library on either SOLiD V3 or V4 instruments (Applied Biosystems, Inc). 
A complete capture protocol can be found on the Baylor Human Genome Website 
(http://www.hgsc.bcm.tmc.edu/documents/Preparation_of_SOLiD_Capture_Libraries.pdf). 
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Alignment, De-duplication, and BAM File Generation 
SOLiD reads were mapped to the Ensembl release 45 version of the Human NCBI Build 36 
using BFAST v0.6.4 using standard parameters. For each sample, individual runs in BAM 
format were merged together and duplicates were marked in the merged BAM files using Picard 
v1.22.  Duplicate reads were excluded from further analysis.  
 
Sample Identity Verification 
To verify the identity of each BAM file, we compared our sequencing genotypes with high-
density SNP array data (Affymetrix) from The Cancer Genome Atlas research consortium using 
a customized concordance analysis pipeline. The pipeline applies two genotype calling methods, 
e-GenoTyping, which screens raw reads for expected alleles from each read subset.  After SNP 
calling, which uses the BAM file as input, filters duplicate reads and low mapping quality reads 
to produces a list of SNPs/INDELs in the format of SAMtools pileup.  Our concordance metric 
incorporates allele frequency to reward matches or penalize mismatches between rare alleles. 
The metric also rewards exact matches or mismatches, and penalizes one allele matches, which 
are statically more common among unrelated samples.  About 40,000 sites from the SNP array 
fall in the capture design region and contribute to the concordance metric.  Samples are judged to 
be concordant and uncontaminated when they score significantly higher against their own SNP 
array data than any other patient, and the average of the scores against other samples is 
significantly lower.   A match, by e-GenoTyping, is 95 +/- 3%, whereas unrelated samples score 
approximately 70%.  For SNP call analysis, a match is 98 +/- 2%, and whereas unrelated samples 
score approximately 70% 
 
Somatic Mutation Calling 
 The aligned reads from whole exome sequencing were prefiltered to remove reads with 3 or 
more non-reference bases, including insertions or deletions.  This removed approximately 1-3% 
of reads from the BAM file.  Base substitution and indels in SOLiD reads observed by pileup 
(SamTools 0.1.7) were collected and filtered to remove variant bases with SNP quality <100.   
For any given variant position in the tumor the variant allele frequency must be 15%.  In 
addition, at least one read harboring the variant must have mapping quality=255 (i.e., uniquely 
mapped), and one variant must be Phred quality 40.  Variants were discarded if they were 
observed only at the ends of reads, in position 38-50, or if they exhibited strand bias.  Variants 
were annotated as somatic mutation if they were not observed in the normal. Putative somatic 
variants observed less than 5 times, or in which the coverage in the normal sequence was less 
than 9 were set aside. Greater than 80% of the target bases have sufficient coverage in both 
tumor and normal exome to make somatic mutation calls. 
 
Annotation 
Variants were annotated using gene structures from the NCBI RefSeq transcript set. Coding base 
substitutions were classified as missense, nonsense, splice site, or silent.  Insertions and deletions 
were classified as in frame or frame shifting and submitted to the TCGA Data Coordinating 
Center. 
 
Mutation Validation 
All somatic and LOH variants were validated using a sequencing chemistry different from the 
discovery chemistry (SOLiD).  PCR primers are designed to amplify the mutation target in both 
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the tumor and the normal and the amplification products were sequenced using the AB 3730 
Sanger, or 454 pyrosequencing methods. PCR reactions are cleaned using Exo Sap IT, (VWR, 
Inc.) for Sanger sequencing and by Solid Phase Reversible Immobilization (SPRI) beads 
(AMPure XP, Beckman Coulter Genomics) for 454 sequencing. For the Sanger-based validation, 
forward and reverse reads are generated and variants are called using SNP Detector v 3.0 
software. Amplicons in which SNPdetector did not call the mutation were visually examined for 
evidence of the mutant allele.  For the 454 sequencing based validation PCR products from 
tumor and normal samples are made into separate pools of 1000 amplicons.  454 Titanium 
sequencing libraries are generated and each pool is sequenced in a separate 454 run. Reads that 
map to their cognate amplicon in the genome reference sequence are realigned to the amplicon 
reference with crossmatch and the variant coordinate is examined for the presence of the somatic 
mutation.  There must be at least 50 matching reads in tumor and normal to make a variant call 
although typically there are 500-2000 reads per amplicon.  A variant is validated if it is observed 
in the tumor in at least 5% of the reads and not be observed at all in the normal. Variants in 
which the mutant allele frequency was 40% or greater in the original SOLiD sequencing data 
exhibited an 80% validation rate in Sanger sequencing. Allele frequencies less than 40% validate 
with decreasing efficiency by Sanger sequence, and must be validated by 454. 
 
Downstream Analyses of Mutations 
 
Mutation Annotation 
Translational annotation of all somatic mutations is based on the combination of all human 
transcripts obtained from Ensembl Release 54_36p and the concurrent release of Entrez Gene 
(NCBI/Genbank) from May 2009 
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ASN_BINARY/Mammalia/Homo_sapiens.ags.gz).   
The reference alleles and positions were derived from the sequence and coordinates of NCBI 
Build36.  All transcripts from both databases were annotated and a single representative 
transcript was selected for each somatic mutation based on the significance of the predicted 
functional effect of each mutation, ordered from most significant to least significant as follows: 
nonsense, frameshift, splice site, in frame, missense, no stop (nonstop/readthrough), silent, and 
RNA. Splice site mutations were restricted to substitutions, deletions, or insertions overlapping 
the 2bp intronic sequence defined as the splice donor or splice acceptor. RNA mutations were 
restricted solely to transcripts without an annotated open reading frame. Mutations affecting 
3'UTR, 5'UTR, intronic sequence, and intergenic sequence were discarded for the purposes of 
downstream analysis. Mutations are encoded in MAF format and are available in the external file 
Table_S2.1.MAF. It should be noted that the overall list of somatic mutations is enriched for 
non-silent mutations versus silent mutations due to several factors, including the selection of a 
single representative transcript for each gene when multiple isoforms exist and a focus on 
reporting the annotation for the single transcript having the most most significant deleterious 
effect and largest open-reading-frame - all of which results in the under-representation of 
transcripts with smaller ORFs and omission of silent mutations that occur in alternate reading 
frames when multiple exons with different reading frames span a single mutation site. 
 
 
Pfam Annotation and Analysis 
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Pfam(10, 11) protein domain annotation for all Ensembl and Entrez Gene transcripts was 
obtained by importing results from the Ensembl database or running InterProScan(12) for all 
transcripts where no domain annotation could be retrieved from the database.  All non-silent 
mutations within identical Pfam domains were consolidated across gene families and statistically 
relevant clusters were selected for further analysis. 
 
Background Mutation Rate Calculation 
The overall background mutation rate was determined by dividing the total number of mutations 
by the total number of covered bases.  This yielded an estimate of the BMR that was 
conservative (i.e. high), due to the fact that it includes all driver events as well as all passengers.  
We refined our estimate of the BMR by excluding the following highly mutated (and likely 
driver-containing) genes: TP53, BRCA1, BRCA2, NF1, and RB1.  This lowered the final BMR 
estimates by approximately 2 percent. To account for the fact that certain base contexts and 
mutation types are known to have increased mutation rates, e.g. C residues in CpG dinucleotides, 
we calculated context-specific background mutation rates for each categories (Table S2.2).  
Table S2.2a: Method 1  
Class Mutati on Rate 
AT Transitions 3.86E-07 
AT Transversions 5.38E-07 
CG Transitions 6.29E-07 
CG Transversions 1.33E-06 
CpG Transitions 4.72E-06 
CpG Transversions 1.47E-06 
Indels (frame-shift and 
in-frame indels) 8.92E-08 
Overall BMR 1.74E-06 
Table S2.2b Method 2 
Class Mutati on Rate
AT Mutations 8.54E-07
CG Transversions 1.20E-06
other CG Transitions 5.45E-07
CpG Transitions 4.31E-06
Indels + Null 2.20E-07
Overall BMR 1.70E-06

 
 
Identification of Significantly Mutated Genes 
The multitude of variables associated with genes and their somatic mutations makes assessing 
mutational significance a challenging problem. Specifically, there are various methods by which 
one could take account of the collective effects of these variables. Here, we use two approaches 
that both consider the diverse mutation rates for transitions and transversions under various 
sequence contexts, but that differ in the number and content of the mutation categories 
(Supplementary Table S2.2), as well as how the various category contributions are combined to 
obtain a final P-value. The detailed implementations are outlined below.  
The first approach, MUSIC (MutationSigificanceInCancer, Dees et al., in preparation), is 
inspired by the analysis of mutation patterns in a variety of cancer types (13, 14). Transitions 
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generally occur at a higher rate than transversions. Substitution rates are also influenced by 
flanking sequences, an obvious example being that cytosines in CpG dinucleotides have a 
significantly higher mutation rate than cytosines in other sequence contexts. Moreover, the rate 
of indel events is roughly an order of magnitude lower than the rate of substitutions. These 
observations suggest scoring mutations according to their prevalence. Here, independent tests are 
first performed for the individual observations within the different sequence mutation categories 
(eg. A/T transitions, A/T transversions, C/G transitions, C/G transversions, CpG transitions, CpG 
transversions, and indels). Then, methods like Fisher’s test, likelihood test, and convolution, can 
be used on the category-specific binomials to obtain an overall P-value. Specifically, Fisher's 
approach combines P-values from individual categories into one and a final result is calculated 
based on binomial distribution given the estimated background mutation rate. The likelihood 
ratio (LR) test calculates a P-value based on an LR between two hypotheses, the null hypothesis 
(i.e. true mutation rate = BMR) and alternative hypothesis (i.e. true mutation rate = maximum 
likelihood estimate), and uses a Chi-square distribution of LR. The convolution test is based on a 
semi-exact binned distribution/histogram of the product of point probabilities from individual 
categories. The false discovery rate for multiple-gene testing is controlled in all 3 methods using 
the standard Benjamini and Hochberg False Discovery Rate (FDR) procedure. Significant genes 
identified by this method are in Table S2.3a.  It must be noted that the convolution test found 
TTN as significant. In contrast, Fisher’s test and likelihood test both placed TTN as non-
significant. We noticed that TTN has a high fraction of nonsilent mutations (67/83 or 80.7%)  
One possible explanation for the higher than expected number of nonsilent mutations in this gene 
is that an excessive number of rare or poorly characterized non-functional exons were targeted 
and sequenced when consolidated coding region targets were identified using a combination of 
all transcript isoforms present in Genbank, Ensembl, and UCSC.  Dozens of transcript isoforms 
exist for TTN in these databases, however, no single common isoform exists in the CCDS 
database and many individual isoforms contain unique exons. 
 

Table S2.3a. Genes significantly mutated by Method 1.  

Rank G ene Mutations 
AT 
Transitions 

AT 
Transversions 

CG 
Transitions 

CG 
Transversions 

CpG 
Transitions 

CpG 
Transversions Indels F isher p-value 

Likelihood 
Ratio p-value 

Convolution p-
value Fisher FDR 

Likelihood 
Ratio FDR 

Convolution 
FDR 

1 TP53 302 46 26 56 4 5 61 1 4 54 0.00E+00 0.00E+00 0.00E+00 0.0000 0.0000 0.0000 
2 BRCA1 11 0 1 1 2  1 0  6 2.62E-05 6.83E-07 7.62E-08 0.2648 0.0069 0.0008 
3 CSMD3 19 2 7 2 5  1 2  0 1.40E-04 9.66E-05 1.05E-06 0.9450 0.0886 0.0071 
4 NF1 13 3 0 1 3  1 1  4 4.47E-04 1.40E-04 3.05E-06 1.0000 0.0914 0.0154 
5 CDK12 9 2 1 2 0  0 1  3 8.05E-04 4.21E-05 5.77E-06 1.0000 0.0784 0.0233 
6 FAT3 19 3 6 2 4  4 0  0 6.79E-04 1.24E-04 8.06E-06 1.0000 0.0914 0.0236 
7 TTN** 67 9 15 7 19 13 2 2 1.00E-02 2.61E-02 8.20E-06 1.0000 0 .2257 0 .0236 
8 GABRA6 6 1 0 3 1  1 0  0 7.56E-03 2.10E-04 4.68E-05 1.0000 0.0914 0.1181 
9 BRCA2 10 1 1 0 2  1 0  5 4.78E-03 2.40E-04 6.36E-05 1.0000 0.0914 0.1426 

Genes with convolution FDR <0.15 were included in Table S2.3a. We consider genes 
with convolution FDR <0.15 and also with Fisher’s test FDR and/or Likelihood FDR 
<0.15 as significant. **TTN is not significant based on this criteria. 
 

1. The second algorithm, MutSig (Lawrence et al., manuscript in preparation), is based in 
part on methods we have published elsewhere(15, 16).  In brief, we tabulate the number 
of mutations and the number of covered bases for each gene.  The counts are broken 
down by mutation context category: transitions at CpG dinucleotides, transitions at other 
C:G basepairs, transversions at C:G basepairs, mutations at A:T basepairs, one for indel 
and “null” mutations, which included indels, nonsense mutations, splice-site mutations, 
and non-stop (read-through) mutations. For each gene, we calculate the probability of 
seeing the observed constellation of mutations, i.e. the product P1 x P2 x … x Pm,  or a 
more extreme one, given the background mutation rates calculated across the dataset.  
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(This is done by convoluting a set of binomial distributions, as described previously(2). 
This final P-value is then adjusted for multiple hypotheses according to the conventional 
Benjamini-Hochberg procedure for controlling False Discovery Rate (FDR). Mutations 
identified by this method are in Table S2.3b. 

 
Table S2.3b Significant by method 2. 

Rank Gen e Coverage Mutations 
CpG 
Transitions 

Other CG 
Transitions 

CG 
Transversions 

AT 
Mutations 

Indels and 
Null P-valu e FDR 

1 TP53 393540 302 50 33 39 64 11 6 <1.00e-11 <1.89e-07 
2 BR CA1 1833605 11 0 0 1 0 10 3.20E-09 0.00003 
3 NF 1 2607776 13 1 0 1 3 8 1.40E-06 0.0088 
4 F AT3 3637009 19 4 2 3 9 1 8.35E-06 0.039 
5 G ABRA6 439842 6 1 3 1 1 0 0.000022 0.08 
6 RB 1 828029 6 0 0 1 0 5 0.000029 0.08 
7 CS MD3 3608502 19 1 2 7 8 1 0.00003 0.08 
8 BR CA2 2831480 10 1 0 0 2 7 0.000037 0.087 
9 CD K12 1524427 9 0 0 1 3 5 0.00006 0.13 

 
Recurrent Mutation Identification and Proximity Analysis 
Positional clustering of somatic mutations was exploited as a potential signal for functional 
elements. All somatic mutations having protein-altering translational effects were annotated 
based on the best representative transcript from Entrez Gene or Ensembl and the position of 
amino acid residues corresponding to affected nucleotides was identified. Mutations within a 
single gene were compared to identify those instances where mutations occurred within close 
proximity and clustered mutations were assigned to 10 bins representing a separation of 0-9 
amino acid residues.  For those deletions spanning sequence coding for multiple amino acid 
residues, the closest amino acid to the cluster was selected.  Silent mutations and mutations 
affecting non-protein-coding RNA sequences were not included in proximity analysis.  
Comparison of Mutations with COSMIC and OMIM databases 
Detected and annotated mutations were compared to the COSMIC (version 48) and OMIM 
(Downloaded on 08/27/2010) databases. For each mutation, all possible matching transcripts 
were used to determine possible amino acid changes with respect to both residue and position 
within the associated protein. This change was then checked against the two databases. For 
COSMIC, if the genomic coordinate or amino acid position is identical to any record in the 
database, the mutation was declared a match. For OMIM, only amino acid position was used for 
comparison. In cases where a mutation affected a splice site, we checked to see if its genomic 
coordinates were present in COSMIC. OMIM does not include genomic coordinates. Mutations 
are recorded in the separate file Table S2.4.xls. 
 
Hand curation of TP53 
Given the high rate of TP53 we examined the TP53 gene by hand.  25 additional mutations were 
discovered and 20 retained after subsequent 3730 validation attempts. The results are shown in 
Table S2.5. 

Table S2.5: Additional TP53 mutations discovered by hand curation 

Patient Cen ter 
Classif
ication Chr Start End Ref Tum1 Tu m2 T ype Transcript 

Protein 
change 

TCGA-10-0927 b cm DEL 17 7520294 7520306 
TTGCTTGGGA
CGG - -  F rame_Shift_Del NM_001126113.1 p.P36fs 

TCGA-13-0717 bcm DEL 17 7518270 7518275 TGCCGC - -  I n_Frame_Del NM_001126117.1 
p.G112_M114>
V 

TCGA-23-1120 bcm SNP 17 7520083 7520083 C A A  M issense NM_001126113.1 p.R110L 
TCGA-25-1634 bcm DEL 17 7520201 7520202 GA - -  F rame_Shift_Del NM_001126113.1 p.A70fs 
TCGA-36-1574 bcm SNP 17 7517845 7517845 C T T  M issense NM_001126117.1 p.R141H 
TCGA-36-1576 bcm DEL 17 7514743 7514743 G - -  F rame_Shift_Del NM_001126115.1 p.R205fs 
TCGA-04-1342 broad I NS 17 7517800 75 17801 - T T Frame_Shift_Ins NM_001126117.1 p.N156fs 
TCGA-04-1356 broad S NP 17 7518915 7 518915 T C C Missense NM_001126117.1 p.Y88C 
TCGA-13-1510 broad S NP 17 7518937 75 18937 G A A Nonsense NM_001126117.1 p.R81* 
TCGA-23-1027 broad S NP 17 7518982 7 518982 C A A Nonsense NM_001126117.1 p.E66* 
TCGA-23-2079 broad S NP 17 7520032 75 20032 C A A Splice_Region NM_001126117.1 p.T125_splice 
TCGA-24-1431 broad S NP 17 7519000 75 19000 G A A Nonsense NM_001126117.1 p.Q60* 
TCGA-24-2035 broad D EL 17 7517625 7 517626 GA - - Frame_Shift_Del NM_001126117.1 p.S183fs 
TCGA-24-2280 broad S NP 17 7519000 75 19000 G A A Nonsense NM_001126117.1 p.Q60* 
TCGA-24-2298 broad S NP 17 7518335 75 18335 T C C Splice_site NM_001126117.1 p.V93_splice 

TCGA-25-2398 broad I NS 17 7519193 75 19194 - 

CCGGGCGGGG
GTGTGGAATC
AGTG 

CCGGGCGGGG
GTGTGGAATC
AGTG In_Frame_Ins N M_001126117.1 

p.G22>GTDSTP
PPG 

TCGA-59-2354 broad S NP 17 7518915 7 518915 T C C Missense NM_001126117.1 p.Y88C 
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TCGA-61-2012 broad S NP 17 7518915 7 518915 T C C Missense NM_001126117.1 p.Y88C 
TCGA-10-0930 wustl SNP 17 7520032 7520032 C G G  S plice_Region NM_001126117.1 p.T125_splice 

TCGA-13-0723 w ustl DEL 17 7519195 7519207 
CGGGCGGGGG
TGT - -  F rame_Shift_Del NM_001126117.1 p.T18fs 

TCGA-13-0897 wustl INS 17 7517815 7517816 - A A  F rame_Shift_Ins NM_001126117.1 p.R151fs 
TCGA-13-1506 w ustl INS 17 7520215 7520216 - ATTCTGGG ATTCTGGG Frame_Shift_Ins NM_001126113.1 p.M66fs 
TCGA-13-1506 wustl SNP 17 7520228 7520228 C T T M issense NM_001126113.1 p.E62K 
TCGA-24-1417 wustl SNP 17 7518264 7518264 G A A  M issense NM_001126117.1 p.R116W 

TCGA-24-1549 w ustl DEL 17 7518315 7518346 

TGGTACAGTC
AGAGCCAACC
TAGGAGATAA
CA G G  S plice_Site_Del NM_001126117.1 p.V93_splice 

 
Analysis of mRNA expression levels 
We examined the mRNA expression level for the target genes. Most appeared to show at least 
some expression in the majority of samples. Two genes, GABRA6 and FAT3 did not (Figure 
S2.1). 

  
Figure S2.1. mRNA expression levels for three significantly mutated genes. GABRA6 (top two 
panels) show very low (likely absent) expression in all tumors and in nearly all normal samples 
on U133A (left) and Exon array (right). FAT3 shows very low expression in tumors and low 
expression in normals (lower left). TP53 is well expressed in many samples and very low in 
others (see Supplement S8). 
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Supplementary Materials: Functional Mutations 
 
Hannah Carter, Josue Samayoa, Dewey Kim, Rachel Karchin 
 
We applied CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) [1, 2] to identify and 
prioritize somatic missense mutations most likely to generate functional changes that enhance tumor cell 
proliferation (drivers).  These prioritizations are independent of mutation frequency, thus CHASM can 
potentially detect driver missense mutations and driver genes that would not otherwise be detected by 
methods dependent on mutation recurrence. 
 
Excel worksheet with scores and associated annotations is available at 
http://karchinlab.org/S3_Functional_Mutations_Supp.xls 
 
Results 
 
We identified 122 validated somatic missense mutations (in 113 genes) that are strong candidates for future 
studies, in spite of the fact that they did not occur in genes identified as significantly mutated (by frequency) in 
this TCGA study. These mutations occur in genes associated with several pathways potentially important for 
oncogenesis, including MAPK signaling, NFKB signaling, apoptosis, angiogenesis and inflammatory response 
pathways.   
 
Of the 147 validated missense mutations that occurred in significantly mutated genes, 80 were scored as 
significant driver mutations by CHASM (FDR < 0.25). Seventy-six of these were in TP53, one in NF1 and three 
in CDK12 (CRKRS).  Fifty-one TP53 mutations and one NF1 mutation were in the CHASM training set and 20 
TP53 mutations occurred at positions that were in the training set but had different amino acid substitutions 
(Methods).    
 
Methods 
 
CHASM uses a Random Forest [3, 4] trained on a positive class of driver missense mutations and a negative 
class of passenger missense mutations.  The positive class consists of 3299 missense mutations previously 
identified as playing a functional role in oncogenic transformation from the COSMIC database [5] and the 
negative class is synthetically generated with a computer algorithm that attempts to mimic patterns of random 
point mutations in a specific cancer type (e.g. serous ovarian carcinoma). The algorithm samples from eight 
multinomial distributions derived from background substitution rates (by di-nucleotide context) in the 
sequenced TCGA ovarian samples (S3 Table 1). 
 
To avoid overfitting, the training set is split into two partitions, one of which is used for feature selection and the 
other to actually train the random forest classifier. 
 
Each missense mutation is represented by 62 predictive features, including measures of evolutionary 
conservation, amino acid physiochemical properties, predicted protein structure, and annotations curated from 
the literature, retrieved from the UniProtKB database [6].  While an information theoretic analysis indicates that 
all of these features contribute to classification performance [1], the most important features in this study are 
(S3 Figure 1): 

o Location in an enzymatic domain involved in post-translational modification; 

o Compatibility with observed amino acid residues in an alignment of protein orthologs;  

o Frequency of SNPs in the exon in which the mutation occurs;   

o Average PhastCons [7] nucleotide-level conservation in the exon in which the mutation occurs; 

o Fraction of sequence directly neighboring the mutated site composed of basic amino acids (K,R). 
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o Negative entropy in the column of amino acids that align to the mutated position in a protein 
superfamily multiple sequence alignment.  

Discussion 
  
A potential strength of random forest classifiers is that they are able to utilize interactions among predictive 
features.   We explored visualization of higher-order feature interactions, using principal component analysis 
(PCA) [8], a transformation in which high-dimensional data is projected into a lower-dimensional co-ordinate 
system.   In the transformed space, each dimension represents a weighted linear combination of the original 
data, and the first few dimensions span most of the dynamic range in the data.   By visualizing these 
dimensions (the “principal components”), it is often possible to see statistical patterns and hidden structure in a 
data set.  
 
Using PCA, we explored whether the driver and passenger mutations in the CHASM training set could be 
discriminated from each other without supervised learning, solely on the basis of differences in their feature 
distributions.  We generated a matrix in which the rows represented the training set mutations plus the 122 
ovarian somatic mutations and the columns represented the 20 most important features.  PCA analysis yielded 
a projection of this data onto a three dimensional coordinate system (S3 Figure 2). In the transformed space, 
the passenger mutations tend to form a cluster (blue), while the drivers tend to radiate out from this cluster 
(red). Thus, there appears to be some separation between the two classes in a space that represents 
interacting features, even when the location of a mutation in the space does not depend on its class 
membership. Interestingly, most of the 122 predicted ovarian driver mutations (green) also radiate out from the 
cluster of passengers. 
 
We also investigated whether the 122 mutations could be associated with regions of high mutation density 
(“hot spots”).  One approach to identifying hot spots focuses on individual genes.  However, we observed that 
the 122 mutations frequently occurred in the same few kinase families, including mitogen-activated protein 
kinases (MAPKs), cyclin-dependent kinases (CDKs), and serine-threonine kinases (STKs) and that these 
mutations tended to occur in hot spots in both primary protein sequence and tertiary protein structure.  Kinase 
family mutation hot spots have been previously associated with disease-related mutations [9, 10].  
 
Serine-threonine kinases (STKs).  Four STKs contain mutations that were classified by CHASM as drivers 
(FDR<0.25) (STK10 L85P, STK38 K354N, STK33 T140M, STK38L L359I). We aligned these four sequences 
with CLUSTALW [11] and identified putative hot spots (S3 Figure 3).  Because amino acid residues may be 
close together in tertiary protein structure, but not in primary amino acid sequence, we also mapped these 
mutations onto an X-ray crystal structure of STK10 (PDB ID 2j7t) [12] (S3 Figure 4).  On the tertiary structure, 
the mutations appear to form two distinct hot spots, one of which is in close proximity to the kinase active site. 
 
Mitogen-activated and cyclin-dependent kinases (MAPKs and CDKs).  Six MAPKs and 7 CDKs contain 
mutations classified by CHASM as drivers (FDR<0.25).  We identified putative hotspots in the alignments of 
these MAPK and CDK proteins (data not shown).  However, these proteins are closely related (pairwise 
BLAST E-values << 0.001) and we explored whether we could identify more hotspots by combining them in a 
single alignment.  We also added the kinases GSK3A and RAGE (pairwise BLAST E-values << 0.001) to the 
alignment (S3 Figure 5).   This alignment reveals a hotspot (GSK3A I122M, CDC7 D62G) proximal to the 
kinase glycine-rich loop (which plays a critical role in ordering of the ATP binding pocket [13]) and several other 
putative hotspots.  Notably, mutations are seen at the equivalent aspartic acid in two CDKs (D73 in CDK1 and 
D90 in CDK19).  This kind of event has previously been associated with important somatic mutations in cancer, 
for example mutation at R132 in IDH1 and its equivalent R172 in IDH2 were both shown to be drivers in 
glioblastoma multiforme [14].  We mapped the mutations onto an X-ray crystal structure of MAP3K7 (PDB ID 
2eva) [15].  With respect to tertiary structure, there appear to be three main hot spots: (CDC7 D62G, GSK3A 
I122M); (MAP3K7 G45V, MAP2K6 V163G, CDK17 R312G, CDK17 K343N, CDK15 V210M, MAP3K13 
V317W, CDK12 Y901C, MK08 L198F, M4K3 D196N); and (CDK8 E165Q, RAGE Q257P, CDK12 L996F).  
Notably, the second hot spot clusters tightly around the kinase active site (ATP binding pocket) and includes a 
mutation (CDK17 R312G) within the highly conserved HRD motif.  Furthermore, this analysis reveals clustering 
in three dimensional space for residues distant in primary sequence.  Such clustering would not be expected 
by chance and suggests key functional roles for these regions. 
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While the functional relevance of some of these hot spots is unclear, these results provide additional support 
for the hypothesis that regions of high mutation density exist in kinases and that identifying these hotspots may 
be useful in discovering driver mutations in cancer. 
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S3 Tables 
 
 
S3 Table 1. Eight multinomial distributions represent the (normalized) rates of each type of nucleotide 
substitution in serous ovarian carcinoma, depending on di-nucleotide context.   Frequencies provided by Mike 
Lawrence of the Broad Institute. 
 
 C in CpG G in CpG C in TpC G in GpA A C G T 
A 0.13 0.77 0.27 0.40 0.00 0.39 0.36 0.28
C 0.00 0.09 0.00 0.37 0.28 0.00 0.23 0.48
G 0.09 0.00 0.30 0.00 0.42 0.22 0.00 0.24
T 0.78 0.14 0.43 0.23 0.30 0.39 0.41 0.00
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S3 Figures 
 
S3 Figure 1.   Histogram analysis of the most important mutation features identified in this study.  Feature 
value distributions differ between the driver and passenger missense mutations in the CHASM training set 
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S3 Figure 2. Principal components analysis reveals substructure in the CHASM training set driver mutations  
(red), passenger mutations (blue) and 122 predicted ovarian driver mutations (green).  In the transformed 
space, the predicted drivers are distributed more like the training set drivers than the training set passengers.  
Plot done with Matlab Toolbox for Dimensionality Reduction [16].  
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S3 Figure 3.  Serine-threonine kinases (STKs) with missense mutations in this study that were scored as 
significant or weakly significant by CHASM.  Sequences were aligned with CLUSTALW and mutations were 
mapped onto alignment columns.  Two mutational hot spots [STK33 T140M, STK10 L85P] and [STK38 K354N, 
STK38L L359I] cluster in three dimensions (see also, S3 Figure4).  Also shown are the highly conserved 
kinase “HRD” and “DFG” motifs, which are involved in metal ion coordination and ATP binding [13].  
 

 
 
 
S3 Figure 4.  STK mutations mapped onto the X-ray crystal structure of STK10 (PDB ID 2j7t) [12].  The 
location of the mutations in the protein’s tertiary structure shows that there are two mutation hot spots (protein 
is shown in dimerized form).  The hotspot containing [STK33 T140M and STK10 L85P] is in close proximity to 
the kinase active site. 
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S3 Figure 5. MAPKs, CDKs, GSK3A and RAGE contain mutations scored as significant by CHASM.  
Sequences were aligned with CLUSTALW and mutations were mapped onto alignment columns.  Several 
putative hot spots were identified. The CDK1 D73H and CDK19 D90G mutations map to the same alignment 
column and are most likely functionally equivalent. 
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S3 Figure 6. MAPK, CDK, GSK3A and RAGE mutations predicted as significant by CHASM mapped onto an 
X-ray crystal structure of MAP3K7 (PDB ID 2eva). The location of the mutations suggests three hot spots: 
(CDC7 D62G, GSK3A I122M) shown in blue; (MAP3K7 G45V, MAP2K6 V163G, CDK17 R312G, CDK17 
K343N, CDK15 V210M, MAP3K13 V317W, CDK12 Y901C, MK08 L198F, M4K3 D196N) shown in magenta; 
and (CDK8 E165Q, RAGE Q257P, CDK12 L996F) shown in green.  The first and second clusters are located 
in close proximity to the glycine-rich loop and kinase active site (ATP binding pocket) respectively.  
Furthermore, the second cluster, magenta, contains a residue in the highly conserved HRD motif (CDK17 
R312G).  Notice that mutations CDK8 E165Q and MAPK3 G45V cluster in three dimensional space with 
residues far away in primary sequence (S3 Figure 5). 
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Supplemental Methods S4: 
Functional mutations in ovarian cancer 
 
Method 

 
To predict the functional impact of protein missense mutations, we used a new 

computational approach [1], which is based on the assessment of evolutionary 
conservation of amino-acid residues in a protein family multiple sequence alignment. 
Given the genomic coordinates of a missense mutation, the reference base and the 
substituted nucleotide, a fully automated computational protocol (available at 
http://mutationassessor.org) searches for sequence homologs, builds a multiple 
sequence alignment, clusters sequences into subfamilies and scores a mutation by the 
whole-family conservation and the conservation within a particular subfamily [2]. 
Mutations that affect conserved residues are more likely to be functional. The scoring 
method was validated and calibrated by separation of a large set of disease-associated 
variants (~20K) from common (benign) polymorphisms (~35K) with an accuracy of  
~80% [1]. 

The automated computational protocol integrates various types of information 
related to the functional impact of a mutation: it determines the position of a mutated 
residue in the 3D structure of a mutated protein and its sequence homologs; it 
determines binding sites using available 3D complexes; it returns functional information 
on a protein region affected by a mutation; it also reports known cancer mutations and 
functional variants affecting a mutated position and various other cancer-related 
annotations.  

When assessing the impact of ovarian cancer mutations, we also took into 
account the gene expression level of a mutated protein. Mutations in genes that are not 
expressed are not expected to have a functional impact.  Specifically, we computed a 
percentile of genes in a sample that are expressed at a lower level than the mutated 
gene.   

All functional information is summarized in 22 annotation columns added to the 
supplemental mutations Table_S2.1.MAF (external MAF file). See below for detailed 
descriptions of the annotation columns.  
 
 
Results 
 

For mutations that change an amino acid (missense), we predicted the likely 
functional impact on protein function using a combination of evolutionary information 
from protein-family sequence alignments and residue placement in known or homology-
deduced three-dimensional protein and complex structures. We compared the 
distribution of predicted functional ovarian cancer mutations to disease-associated, 
polymorphic and COSMIC mutations, and we show that ovarian cancer mutations are 
highly enriched in functional mutations compared to polymorphic variants (Figure S4.1).  

Including the 2070 truncating mutations (deletions, insertions, nonsense, 
splicesites), in-frame deletions and insertions, and taking into account only the 2939 
predicted functional missense mutations in genes that are well expressed (the highest 
70% of expressed genes in a sample), we predict that 5009 (26%) of the total 19359 
somatic mutations affect protein function (Figure S4.2).  

It is plausible that only a fraction of these functional mutations contribute causally 
to oncogenesis or disease progression, but this fraction is generally unknown.  Selecting 
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missense mutations predicted to affect protein function with a high score in genes known 
to be functionally involved in at least one type of cancer (source: MSKCC CancerGenes 
[3] & COSMIC [4]) results in 387 (2%) candidate oncogenic mutations, 183 of which are 
mutations in TP53 (Figure S4.2).  
 
 

 
 
 
Figure S4.1. Distribution of ovarian cancer mutations by computed functional 
impact score. A higher score indicates an increased likelihood that a given mutation is 
functional and possibly causative for disease. The functional impact scores of mutations 
in the ovarian cancer data set are compared to mutations listed in the Human 
Polymorphisms and Disease Mutations Index (HUMSAVAR, release 2010_08 ), and in 
the Catalogue of Somatic Mutations in Cancer (COSMIC, v45) [4]. The optimal 
separation (~80%) between two variant classes – disease-associated and polymorphic -  
is achieved at the score threshold of ~1 [1]. There is an enrichment of ovarian cancer 
and COSMIC mutations at higher scores compared to polymorphic variants, which are 
presumed to be non-functional. About 56% of the 6.3K Cosmic mutations scored higher 
than the threshold value. Of the 12943 ovarian cancer missense mutations, the 
functional impact was assessed for 12170 mutations, and among them 4897 (~38% of 
the total missense mutations) scored higher than the threshold value. Plausibly, only a 
subset of these mutations is oncogenic.  
 
 
 
 

Fraction of mutations scored higher than 
a given score value (cummulative distribution)

Functional impact score :  predicted non‐functional predicted functional 
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Figure S4.2.  A quarter of the ovarian cancer mutations are expressed and 
predicted to be functional. A significant fraction of genes affected by likely functional 
mutations have low expression levels and are unlikely to have much functional impact. It total, 
2939 mutations are selected that exceed a threshold value of predicted significant functional 
impact (1.0) and have moderate to high mRNA levels (>0.3). All but two of the observed 
missense mutations in TP53 (185 unique mutations) are above these thresholds (blue) and 
therefore are likely to negatively affect the function of the TP53 tumor repressor. The predicted 
high functional impact of TP53 mutations serves as a positive control of the accuracy of these 
predictions, if one assumes that there is independent knowledge about the functional role of TP53 
alterations in ovarian cancer. 
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Description of the annotation columns produced by automated protocol for 
assessment of functional impact of mutations (http://mutationassessment.org) 

added to the supplemental mutations table: 
 

• MA:variant - genomic position, reference nucleotide, observed nucleotide 
(mutations validated as "wildtype" are ignored) 

• MA:GE.rank - mRNA expression percentile of the mutated gene in the mutated 
sample  (1 = gene with the highest expression in the sample,  0 = gene with the 
lowest expression, based on Affymetrix U133 data) 

• MA:CNA - GISTIC [5] DNA copy number gene status for the gene in the mutated 
sample (-2 = homozygous deletion, -1 = hemizygous deletion, 0 = neutral, 1 = gain, 
2 = high level amplification) 

• MA:OV.variant.samples - total number of samples with the same exact mutation 
• MA:OV.gene.samples - total number of samples with a mutation in the affected 

gene 
• MA:mapping.issue - explanation if a mutation could not be analyzed (no Uniprot 

ID is the most common reason) 
• MA:FImpact - predicted functional impact category 
• MA:FI.score - predicted functional impact score [1] 
• MA:Func.region - 1 = mutated position is within one of the following regions 

annotated by Uniprot: CARBOHYD, CA_BIND, CROSSLNK, DISULFID, 
DNA_BIND, METAL, MOD_RES, MOTIF, NON_STD, NP_BIND, SITE, ZN_FING 

• MA:bindsite.protein - the mutated residue has at least one heavy atom at a 
distance of less than 4.5A to another protein (including protein dimers) 

• MA:bindsite.DNA/RNA - the mutated residue has at least one heavy atom at a 
distance of less than 4.5A to a DNA or RNA molecule 

• MA:bindsite.sm.mol - the mutated residue has at least one heavy atom at a 
distance of less than 4.5A to a small molecule. The following small molecules are 
ignored: PO4, PI, SO4,S UL, CL, BR, NO3, SCN, NH4, K, NA ,LI, MG, DOD, NAG, 
MAN, GOL, SO4, CL, CO3, FS4 (Polyphen) 

• MA:CancerGenes - all annotations by CancerGenes  
• MA:TS - 1 = gene is annotated as a "tumor suppressor" by CancerGenes 
• MA:OG - 1 = gene is annotated as an "oncogene" by CancerGenes 
• MA:COSMIC.mutations - list of all Cosmic mutations in the affected position 
• MA:COSMIC.cancers - list of cancer types in which Cosmic mutations in the 

affected position of this gene were detected 
• MA:Uniprot.regions - all affected Uniprot regions (Feature // Description; /// 

separates multiple regions) 
• MA:TS.interacts - 1 = protein interacts with another tumor suppressor 

(interactions from PIANA, mainly HPRD, TS annotation from CancerGenes) 
• MA:OG.interacts - 1 = protein interacts with another oncogene (interactions from 

PIANA, mainly HPRD, OG annotation from CancerGenes) 
• MA:Pfam.domain - Pfam domain affected by the mutation 
• MA:link.var - hyperlink to a summary analysis table (at http://mutationassessor.org) 
• MA:link.PDB - hyperlink to a PDB Jmol page with the mutated residue highlighted 
• MA:link.MSA - hyperlink to a multiple sequence alignment (MSA) with the 

mutation column highlighted 
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Supplementary Methods S5: Copy Number Analysis 
 
Segmented copy number profiles for ovarian carcinoma and matched control DNAs (489 Agilent 
1M arrays for tumor and for normal, or 978 total – see Table 1) were analyzed using Ziggurat 
Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set of 
inferred copy number changes underlying each segmented copy number profile (for details, see 
Beroukhim et al.1 and Mermel et al, submitted). As has been previously reported for multiple 
cancer types1, across all samples the copy number events can be clearly divided into at least two 
classes on the basis of their observed frequency: focal copy number events much smaller than a 
chromosome arm, and broad copy number events that span a chromosome arm or entire 
chromosome (see Figure S3.1). As broad and focal copy number changes appear to have 
markedly different rates of occurrence, and may have distinct biological consequences, we 
analyzed them separately. A length threshold of 50% of a chromosome arm was used to 
distinguish between broad and focal events (see Figures S3.2 and S3.3). To remove false 
positive segments resulting from hyper-segmentation, we further filtered segments using an 
amplitude threshold at a copy-difference of 0.1 (data not shown).    

 
For broad copy number changes, the frequency with which chromosomal arms are measured to 
undergo gain or loss is negatively correlated with the size of that arm (Figure S3.4). To 
determine which arms were significantly enriched/depleted among copy gains and losses after 
accounting for this trend, we compared the expected frequency of gain and loss for each arm, 
determined by linear regression, with the actual frequency observed over the entire dataset.  
Since samples with gain of a chromosome arm cannot have loss of the same arm, we computed 
the frequency of gains and loss among the undeleted and unamplified samples, respectively.  By 
decoupling the gains and losses in this way, the frequency metric follows a binomial distribution; 
z-scores for each arm were calculated using the normal approximation to the binomial (Table 
S5.1), and the resulting one-sided p-values were corrected for multiple hypotheses testing using 
the Benjamini-Hochberg FDR method.  The frequency of samples that have segments whose 
length is at least 50% of a chromosome arm, displaying gains (relative copy number >2.1) and 
losses (relative copy number <1.1) is shown for each chromosome arm (Table S5.1). 
 
Focal copy number changes in the 489 ovarian carcinoma DNA samples were analyzed using the 
GISTIC methodology2 with modifications as described in further detail in (Mermel et al, 
submitted).  Briefly, each marker was scored according to the mean amplitude and frequency of 
focal amplification across the dataset, and significance values were computed by comparing to 
the distribution of scores obtained by random permutation of the markers across the genome. 
Significant peak regions of amplification (or deletion) are identified using an iterative peel-off 
procedure that distributes the score associated with amplified (or deleted) segments among all 
peaks that overlap them (weighted according to each peak’s score) until no new region crosses 
the significance threshold of q-value ≤0 .25 on each chromosome. Finally, by taking into account 
the auto-correlation within the GISTIC score profiles, we compute for each peak region a 
confidence interval that is predicted to contain the true driver gene or genes with at least 99% 
probability (see Supplementary methods of Beroukhim et al. 1, Mermel et al, submitted). The 
output of focal GISTIC, defining the key peaks of amplification and deletion in the 489 ovarian 
carcinoma DNA samples, appears in Table S5.2.  
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Regions are defined as possessing deep deletions, shallow deletions, neutral copy number, low 
gain, and high gain in each sample using sample-specific thresholds as previously described3. In 
brief, high  gains are segments with copy number that exceed the maximum median 
chromosomal arm copy number for that sample by at least 0.1; low gains are segments with copy 
numbers from 2.1 to the high gain threshold; neutral segments have copy numbers between 1.9 
and 2.1; shallow losses have copy numbers between 1.9 and the deep deletion threshold; and 
deep deletions have copy numbers that are below the minimum median chromosomal arm copy 
number for that sample by at least 0.1.  Frequencies of all these events are tallied across the 489 
ovarian carcinoma samples (Table S5.2). 
 
A subset of genes located in the 63 recurrent focal amplification regions were selected based on 
an Ingenuity database search and visual scanning genes of interest. We searched the subset of 
genes against information obtained from DrugBank (http://www.drugbank.ca)4,5, including drug 
and associated target information on 1589 genes and 2010 drug entries. Since we are searching 
for inhibitors target the frequently amplified and actively expressed genes, we retained only 
inhibitors from the resulting list.  The list was further manually curated using 
http://clinicaltrials.gov and the literature. The final list of 22 genes and their corresponding 
therapeutic compounds is in Table S5.3. 
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Supplementary Figures 
Figure S5.1 Histogram distribution of copy number change frequency scaled by chromosome 
arm length. Note peaks at 1 and 2 indicating arm or chromosome gains. 
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Figure S5.2. Arm events found in ovarian serous carcinoma. 
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Figure S5.3. Focal copy number changes plotted alone. 
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Figure S5.4. Correlation between gene number and loss frequency. 
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Supplementary Methods S6. mRNA and miRNA Expression Profiling 
A. Affymetrix Exon 1.0  
Sample verification and RNA QC  
Total  RNA  samples  were  received  from  Biospecimen  Core  Resource  (BCR).  Samples  were 
normalized  to  approximately  100ng/ul  concentration  to  perform  the  sample QC.  Total  RNA 
concentration,  quality  and  protein  contamination  were  determined  by  Nanodrop 
measurements.  RNA  integrity  number  (RIN)  and  28s/18s  ratio  were  determined  by  the 
Bioanalyzer  (Agilent,  Santa  Clara,  CA).  To  evaluate  the  possible DNA  contamination  in  RNA, 
quantitative RT‐PCR was performed using  iScript one Step RT‐PCR Kit SYBR Green assay, and 
delta CT values were computed against controls to check if the samples exceeded the genomic 
DNA  contamination of 10ng/ul. All  the quality  values  computed  at  LBNL CGCC were used  to 
compare to the quality data provided by BCR. For each microarray experiment, with each batch 
of ovarian samples, we  included three universal RNA samples as controls  for the experiment. 
We used Universal Human Reference RNA (Stratagene) Cat# 740000 (Stratagene, La Jolla, CA.), 
Human Universal Reference Total RNA Cat# 636538 (BD Clontech, Palo Alto, CA), and Ovarian 
total RNA Cat# R1234035‐50 (Biochain Institute, Hayward, CA).  
 
Whole transcript sense target labeling assay  
2 µg of total RNA was subjected to ribosomal RNA removal procedure using Ribominus kit by 
Invitrogen  Corporation  (Carlsbad,  CA).  Double‐stranded  cDNA  was  synthesized  from  rRNA 
depleted RNA with  random hexamers  tagged with a T7 promoter sequence  (T7‐(N)6 primer). 
The  double‐stranded  cDNA was  then  used  as  a  template  for  T7  RNA  polymerase  producing 
cRNA. A  second  cycle  of  cDNA  synthesis was  performed  using  random  hexamers  to  reverse 
transcribe  the  cRNA  from  the  first  cycle  to produce  single‐stranded DNA  (using dATP, dTTP, 
dGTP, and dUTP) in the sense orientation. cDNA was fragmented using DNA glycosylase (UDG) 
and apurinic/apyrimidinic endonuclease 1 (APE1). The fragmented DNA was then  labeled with 
terminal deoxynucleotidyl  transferase  that conjugates biotinylated nucleotides. 5.5 µg of  this 
biotin–labeled DNA was hybridized overnight with Affymetrix Human Exon1.0 ST microarrays 
and  washed  and  scanned  on  Affymetrix  GeneChip®  Scanner  3000  7G  scanner  with  an 
autoloader,  according  to  the  instructions  from  Affymetrix  GeneChip Whole‐TranscriptSense 
Target–Labeling  Assay manual.  Each  scanned  CEL  image  of  the  array  was  checked  for  any 
significant artifacts.  
 
Data Processing  
RMA was applied  in  combination with affymetrix.aroma  to all CEL  files. This generated gene 
centric expression values, using a CDF file based on remapping of probes to the human genome 
36.1 resulting in expression values for 18,632 genes.  
 
B. Agilent 244K Whole Genome Expression Array  
mRNA labeling  
One  to 2 ug of  total RNA  sample and Stratagene Universal Human Reference were amplified 
and labeled using Agilent’s Low RNA Input Linear Amplification Kit. The total yield of amplified 
RNA (aRNA) and Cy dye incorporation was measured by NanoDrop.  
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Array Hybridization and Imaging  
Sample  and  reference  (7‐10 ug of each) were  co‐hybridized  to  a Custom Agilent 244K Gene 
Expression Microarray. Arrays were scanned on an Agilent Scanner and probe information was 
obtained with Agilent’s Feature Extraction Software. Each scanned  image  is viewed  for visible 
artifacts, and  if multiple artifacts are present, the array  is rejected. Agilent Feature Extraction 
software creates a QC report for each array that includes: (1) Net Signal Statistics: Signal range 
distributions for the red and green channels are presented and compared. Samples with  large 
differences between the red and green channel for net signal are flagged as samples/arrays to 
be watched.  (2) Distribution of Outliers: Samples with  the %  feature non‐uniformity >1% are 
flagged as samples/arrays to be watched.  (3) MA plots: Log of the Processed Signal  is plotted 
versus  Log  of  the  Ratio  (R/G)  for  each  gene  to  help  identify  biases  in  intensity  or  dye.  (4) 
Reproducibility of SpikeIns (an internal hybridization control): reproducibility of Agilent SpikeIns 
are measured by % coefficient of variation (<15) and SpikeIn linearity with R2 values close to 1. 
If any array fails three of the QC criteria it is rejected.  
 
Data Processing  
Data  was  lowess  normalized  and  the  ratio  of  the  Cy5  channel  (sample)  and  Cy3  channel 
(reference) was log2 transformed to create gene expression values for 18,624 genes.    

 
C. Affymetrix HT‐HG‐U133A  
Sample Labeling  
One µg of total RNA was converted to complementary RNA (cRNA) target using the Genechip® 
HT One‐Cycle cDNA  synthesis Kit  (Affymetrix 900687) and  the GeneChip® HT  IVT Labeling Kit 
(Affymetrix  900688).  Total  RNA was  first  reverse  transcribed  using  a  T7‐Oligo(dT)  Promoter 
primer in the first strand cDNA synthesis reaction. Following RNAse H‐mediated second strand 
cDNA synthesis, the double stranded cDNA was purified and served as a template for an in vitro 
transcription  (IVT)  reaction.  The  IVT  reaction  was  carried  out  in  the  presence  of  T7  RNA 
polymerase and a biotinylated nucleotide analog  /  ribonucleotide mix  for cRNA amplification 
and biotin labeling. The biotinlyated cRNA targets were then cleaned up and fragmented.  
 
Array Hybridization  
Samples were  analyzed  using  Affymetrix  HT‐HG‐U133A  peg  arrays  (Affymetrix  900751).  The 
hybridization  and  subsequent  washing  and  staining  were  performed  on  the  Affymetrix 
GeneChip® Array Station (GCAS) automation platform.  
 
Data Processing  
All  samples  included  in  the  current  study met  broadly  accepted  quality  control  standards, 
including  percentage  present,  GAPDH  3’/5’  ratio  and  NUSE  IQR.  RMA1  was  applied  in 
combination  with  affymetrix.aroma  (http://www.aroma‐project.org/).  In  order  to  generate 
gene centric expression values, using a CDF  file based on remapping of probes  to  the human 
genome  36.1,  similarly  as  described  before2.  This  resulted  in  expression  values  for  12,042 
genes.  

 
D. Creation of a unified Expression Data set  
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Data  from  each  platform were  normalized  and  summarized  separately,  as  described  above, 
resulting  in gene expression estimates  for each  sample  and  gene on each platform. Relative 
gene expression values were calculated per platform by subtracting the mean expression value 
across patients from the gene estimate and dividing by the standard deviation across patients. 
Factor analysis was  applied  to  integrate  three expression  values  (one  for each platform), on 
genes  present  at  all  three  platforms  (n  =  11,864).  The  factor  analysis  provided  estimates  of 
relative gene expression  scaled  to have  the  same underlying variation among patients  for all 
genes. We  rescaled  the  unified  gene  expression  of  each  gene  by  estimates  of  the  standard 
deviation across patients. To obtain a single estimate of standard deviation per gene, we took 
the median absolute deviation  (MAD)  for each platform and  then averaged  these estimates, 
restricting to those platforms with high correlation to the unified gene estimates. This gave a 
single estimate of variation per gene that was then used to rescale the unified gene estimates. 

 
E. Subtype discovery and validation 
Gene filtering 
Two filters were applied to eliminate unreliably measured genes and to  limit the clustering to 
relevant genes, similar to the filters used  in the TCGA GBM data set2. The  first filter removed 
genes that had poor unified gene measurements by keeping only genes in which at least two of 
the three platforms’ original measurements had correlation with the unified gene estimate of 
at  least 0.7, resulting  in 8,596 genes. The second  filter selected 1,500 genes with  the highest 
variability across patients, using the MAD.  

 
Identification of expression subclasses using Non‐negative Matrix Factorization clustering 
Subclasses of a data set consisting of unified expression data of 489 samples and 1,500  genes 
were computed by reducing the dimensionality of the expression data from thousands genes to 
a  few metagenes by applying a consensus non‐negative matrix  factorization  (NMF) clustering 
method3.  This  method  computes  multiple  k‐factor  factorization  decompositions  of  the 
expression matrix  and evaluates  the  stability of  the  solutions using  a  cophenetic  coefficient. 
Consensus matrices and  sample  correlation matrices are  shown  for k=2  to k=6  (Figure S6.1). 
The final subclasses were defined based on the most stable k‐factor decomposition and visual 
inspection of  sample by  sample  correlation matrices,  in both TCGA  and Tothill data  set  (see 
below). Clustering with k=4 gave the most consistent result in both sets.  The silhouette width 
was computed to filter out expression profiles that were  included  in a subclass, but that were 
not a robust representative of the subclass. This resulted in the removal of 51 of 135 samples of 
the  Differentiated  subclass;  12  of  107  samples  of  the  Immunoreactive  subclass;  0  of  109 
samples  of  the Mesenchymal  subclass;  and  13  of  138  samples  of  the  Proliferative  subclass. 
Differentially  expressed marker  genes were  determined  for  each  subclass  by  comparing  the 
subclass versus  the other  three subclasses, using Significance Analysis of Microarrays4  (SAM). 
NMF  clustering  and  SAM were  both  applied  as  implemented  in  the  R  statistical  computing 
environment.  

 
Identification of expression subclasses of an independent public data set  
To  confirm  the  presence  of  four  expression  subtypes  in  ovarian  serous  carcinoma,  publicly 
available  expression  profiles were  preprocessed  and  clustered  in  an  identical  fashion  to  the 
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TCGA data. Affymetrix HG‐U133 plus 2 CEL‐files of 245 stage II‐IV ovarian serous cancer patient 
samples were  downloaded  from  the  Gene  Expression Omnibus  (accession  GSE98995).  Gene 
expression  values  were  calculated  for  17,256  genes  using  a  gene  centric  CDF6,  RMA  and 
quantile normalization. Mean  row  subtraction of  log  transformed data was  applied,  and  the 
1,500 most variable genes were selecting using a MAD filter. NMF clustering was applied on a 
data set of 245 samples and 1,500 genes as described above. Consensus matrices and sample 
correlation matrices  are  shown  for  k=2  to  k=6  (Figure  S6.2). Differentially  expressed marker 
genes were determined  for each  subclass by  comparing  the  subclass  versus  the other  three 
subclasses, using SAM.  
 
Comparison of expression subclasses in the TCGA and Tothill data sets 
SAM  calculated  an  F‐score  for  each  gene,  resulting  in  a  vector  of  11,864  F‐scores  for  each 
subclass.   A four by four correlation matrix was computed, with the input vectors being the F‐
score vectors from the four TCGA expression subtypes, and the F‐score vectors from the four 
Tothill expression subtypes (Figure S6.3). 
 
Correlation with Copy Number and Gene Mutations 
Segmented  copy  number  profiles  were  available  for  489  ovarian  carcinoma  samples  and 
matched  normal  controls  (TCGA  Research  Network,  2011).  Chromosomal  regions  were 
categorized  using  sample‐specific  thresholds  into  one  of  the  three  following  levels:  1) 
homozygous deletions, 2) neutral copy number or 3) focal gains. The frequencies of the three 
levels of copy number  for each of  the 113  regions  reported  to be significantly altered  in  this 
manuscript were determined per subtype. Only tumor samples for which the expression profile 
exhibited a positive silhouette width to the centroid of their expression subtype were included 
in the analysis (n=413). 
13,707 somatic mutations present in 271 core samples were tested for statistically higher than 
random  significance  using MutSig  (Table  S2.3a,  Lawrence  et  al., manuscript  in  preparation). 
Frequencies  of mutations  for  ten  genes  identified  as  significantly mutated  by MutSig were 
assessed per subtype.  
Association of copy number alterations and gene mutations with subtype was determined by 
comparing  each  subtype  versus  the  remaining  three  subtypes  using  a  chi  square  test.  The 
Family‐wise  Error  rate  of  p‐values  between  113  copy  number  alterations  and  subtypes was 
controlled by using the Hochberg method implemented in p.adjust (R Development Core Team, 
2008). The Family‐wise Error  rate of p‐values between 10 gene mutations and  subtypes was 
controlled by using the Hochberg method implemented in p.adjust (R Development Core Team, 
2008). Results are shown in Figure S6.4. 
 
 
 
F. Identification of a signature predictive of survival in ovarian cancer 
Gene expression values within each dataset used were normalized to standard deviations from 
the median, and overall  survival was  capped at 60 months. Using a  training dataset of gene 
expression profiles  from 215  stage  II‐IV ovarian  tumors  from  the TCGA  (batches 9, 11‐15), a 
prognostic gene signature for overall survival was defined (genes with univariate Cox P < 0.01), 
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comprised of 108 genes correlated with poor  (worse) prognosis and 85 genes correlated with 
good (better) prognosis. Cox analysis to define the signature was carried out  in September of 
2009, using the training dataset and all patient information available at the time. The signature 
was tested in a validation set consisting of 255 samples available through TCGA (batches 17‐19, 
21, 22 and 24)  in  June of 2010, using  the most up‐to‐date patient  information. Four  tumors 
from the Bonome et al.7 data set were excluded when validating the TCGA signature since they 
had also been included in the TCGA cohort. The prognostic t‐score was defined as the two‐sided 
t‐statistic comparing, within each tumor profile, the average of the poor prognosis genes with 
the average of the good prognosis genes  (e.g. the t‐score  for a given tumor being high when 
both  the “poor prognosis” genes  in  the  signature were high and  the “good prognosis” genes 
were low).  
 
G. miRNA profiling and subtype identification 
miRNA Labeling 
100‐400ng of  total RNA was  labeled by  ligation  to cyanine 3‐pCp molecules using  the Agilent 
miRNA Micorarray  labeling  protocol  (Agilent  Technologies,  Santa  Clara,  CA)  using  T4  ligase 
(NEB, Ipswich, MA). 
Array Hybridization 
Labeled  miRNAs  were  hybridized  to  Agilent  8  x  15K  Human  miRNA‐specific  microarrays 
overnight. Arrays were scanned on an Agilent Technologies Scanner and probe information was 
obtained with Agilent’s Feature Extraction Software. Each scanned  image  is viewed  for visible 
artifacts. Agilent’s Feature Extraction output reports four main microRNA‐specific quality check 
criteria,  including:  (1)  Additive  Error  Estimate,  measure  of  the  background.  Samples  with 
additive error between 5‐12 counts/pixel are flagged as watched, samples with additive error 
greater  than  12  counts/pixel  are  flagged  as  failed.  (2)  Percentage  of  Feature  Population 
Outliers:  samples with  populations  outlier  between  7‐10%  are  flagged  as watched;  samples 
with population outlier greater than 10% are flagged as failed. (3) Median Percent Coefficient of 
Variation (%CV) for replicate probes: measure of reproducibility. Samples with %CV between 8‐
15% are flagged as watched; samples with %CV greater than 15% are flagged as failed. (4) 75th 
Percentile of Total Gene Signal. Samples with 75th percentile total gene signal less than 35 are 
flagged as watched. Any sample that failed any of the first three criteria is repeated. All samples 
used in this study passed quality control. 
 
Data Processing 
Data was  quantile  normalized  on  the  probe  level.  Signals  from  probes measuring  the  same 
microRNA  are  summed  up  to  generate  gene‐centric  total  gene  signal,  followed  by  log2 
transformation. Distance Weighted Discrimination (DWD) method is applied to data for batch‐ 
correction. 
Summary of miRNA consensus clustering 
We used  the Firehose pipeline at  the Broad  Institute  to calculate miRNA clusters based on a 
consensus non‐negative matrix  factorization  (NMF) clustering method8,9. Using  the mean row 
subtraction of expression data, we filtered the data to 150 most variable mirs. Consensus NMF 
clustering8,9 of 487 samples and 150 mirs  identified 3 subtypes (Figure S6.5), with the stability 
of the clustering increasing for k = 2 to k = 8 and the average silhouette width10,11 calculation for 
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selecting the robust clusters(Figure S6.6). Samples with asigned clusters are available at List of 
samples with 3 subtypes and silhouette width and List of samples belonging to each cluster  in 
different k clusters. Samples most representative of the clusters, hereby called "core samples" 
were  identified based on positive  silhouette width10,  indicating higher  similarity  to  their own 
class than to any other class member (Figure S6.6). 
 
 
Supplementary Figures 
 

 

 
Figure S6.1. CNMF clustering of 1,500 variably expressed genes and 489 TCGA Ovarian serous 
carcinoma samples of stage  II‐III‐IV. Consensus matrices  (left panel) and correlation matrices 
(right  panel)  are  shown  for  clustering with  k=2  to  k=6.  The  cophenetic  coefficient  shows  a 
consistently high value between k=2 and k=5. Clustering with k=4  shows  four  robust clusters 
with  limited  overlap  between  clusters. 
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Figure S6.2. CNMF clustering of 1,500 variably expressed genes and 245 Ovarian stage II‐III‐IV 
serous  carcinoma  samples  (Tothill  et  al,  PMID  18698038).  Endometroid  and  lower  grade 
samples  present  in  the  original  study  were  excluded.  Consensus  matrices  (left  panel)  and 
correlation matrices  (right  panel)  are  shown  for  clustering with  k=2  to  k=6.  The  cophenetic 
coefficient suggests an optimal result for k=2, k=4, k=5.  Clustering with k=4 shows four robust 
clusters with  limited  overlap  between  clusters.  Low malignancy  samples  display  particularly 
strong correlation as indicated by the red block in the right lower corner. 
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Figure  S6.3.  Correlation  of  F‐test  score  vectors  between  TCGA  and  Tothill  clusters.  F‐test 
scores were determined by comparing samples of cluster K to the remaining clusters within 
the data set.  
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Figure S6.4. Genomic abnormalities significantly associated with subtype. Copy number associations 
were calculated using copy number profiles  from 413  tumors  (Supplemental Table S6.2a). Mutation 
data was  included from 271 tumors (Supplemental Table S6.2b). Data shown  is from 271 tumors for 
which  copy  number, mutation  and  expression  data was  available.  Significantly  subtype  associated 
abnormalities present in at least 5% of tumor samples are shown. A complete list of abnormalities and 
their association to subtype is shown Supplemental Table S6.2. 
 

Figure S6.5 Consensus NMF clustering of 150 variably expressed genes and 487 samples. The consensus 
matrix (left panel) and correlation matrix (right panel) after clustering show 3 robust clusters with limited 
overlap between clusters. 
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Figure S6.6 The  robust cluster was pointed out by blue  symbol(left panel) and  the  silhouette width of 
each  sample  in  robust  cluster was  shown  on  right  panel.  Silhouette width  is  defined  as  the  ratio  of 
average distance of each sample to samples in the same cluster to the smallest distance to samples not in 
the same cluster.  It was calculated and  the average silhouette width  for all samples within one cluster 
was shown above according to different clusters(left panel). If silhouette width is close to 1, it means that 
sample is well clustered. If silhouette width is close to ‐1, it means that sample is misclassified. 
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Table  S6.3. Overlap  in  cluster membership  of  245 Ovarian  stage  II‐III‐IV  serous  carcinoma 
samples between CNMF clustering and hierarchical clustering as described (Tothill et al, PMID 
18698038). Note the overlap between the high grade clusters 1‐2‐4‐5 and the CNMF clusters. 
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Table S6.4. Multivariate Cox model,  in which worse patient outcome was evaluated among 
tumors  in  both  TCGA  and  Tothill  et  al. datasets,  in  relation  to  the  192‐gene  t‐score  (from 
Figure  2)  as well  as  to  clinical  variables  age  and  surgical  outcome  (i.e.  presence  of  residual 
disease). 
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M7. DNA Methylation Supplemental Text 
 
Cancer-associated epigenetic silencing of genes 

Epigenetic silencing is increasingly recognized as an important alternative to deletion 
or mutation in the inactivation of gene function in cancer (PMID: 9988266, 12042769). 
The identification of genes that are epigenetically silenced in a cancer-specific manner 
adds to our understanding of the full complement of molecular alterations that contribute 
to oncogenesis, and might shed light on the early detection, prevention, treatment and 
prognosis of the disease. 

DNA methylation, repressive histone modifications, and other marks can work in 
concert to achieve an aberrant epigenetically silenced state at susceptible gene promoters. 
For the purposes of this study, the assessment of epigenetic marks is confined to the 
quantitative measurement of DNA methylation levels at a limited number of CpG 
dinucleotides (an average of two per promoter) at 14,475 genes, using the Illumina 
Infinium HumanMethylation27 BeadChip assay (see Supplemental Methods).  

The goal of this section is to identify genes with evidence for cancer-specific 
promoter hypermethylation with an associated decrease in gene expression. The general 
properties of such genes are: low levels of promoter methylation in control tissues 
thought to represent potential cells of origin, high levels of promoter methylation and an 
associated lower expression in at least some of the tumors, and a good inverse correlation 
between promoter methylation levels and gene expression. The relationship between 
DNA methylation and gene expression is complex and highly variable among the 12,233 
genes in our data set for which we have both DNA methylation and gene expression 
measurements. Therefore, the appropriate selection criteria may vary depending on the 
nature of this relationship. In designing a strategy to identify epigenetically silenced 
genes, we considered the following three issues. 

First, the impact of CpG methylation on transcriptional potential depends on the 
density of the methylated CpGs, and their location relative to the transcription start site 
and functional promoter elements. The constraints of the HumanMethylation27 BeadChip 
design, with an average of two CpGs per promoter, do not allow for a comprehensive 
assessment of each gene, and the locations of the measured CpGs may be uninformative 
for some genes. Therefore, we anticipate that we will be unable to identify some silenced 
genes.  Some genes may have alternative promoters for which the methylation status is 
not assessed. Genes lacking promoter methylation in some tumors or in normal tissues 
may not be expressed due to a lack of appropriate transcription factors. These factors all 
contribute to a complex relationship between our DNA methylation measurements and 
observed gene expression levels. We used a rank-based Spearman correlation to allow for 
nonlinear relationships between DNA methylation and gene expression. 

Second, the identification of cancer-associated DNA methylation alterations requires 
a comparison of tumor DNA methylation data to a control tissue, ideally representing (or 
at least enriched for) the cell-of-origin of serous ovarian cancer. The normal ovary 
surface epithelium and fallopian tube epithelium have both been proposed as originating 
tissues for ovarian cancer. Our study includes eight full-thickness fallopian tube samples, 
but no ovarian surface epithelial samples. The presence of other cell types in the full-
thickness samples may introduce DNA methylation profiles that differ from the normal 
epithelial comparator tissue. A technical concern is that all of the fallopian samples were 
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run in a single analysis batch (batch 9), and the clinical parameters of the tumor samples 
within this batch are not representative of those in the entire study. We focused on 
identifying genes with large DNA methylation and gene expression differences between 
fallopian tube and tumors, to address concerns regarding the small sample size of the 
comparison control group, the confounding of biology and batch-associated measurement 
biases, which cannot be fully removed using conventional normalization approaches, and 
variations in stromal contamination among the tumors. 

Third, epigenetic silencing of different genes is likely to occur at varying frequencies 
in the tumor data set. To capture genes with a low frequency of epigenetic silencing, we 
focused on tumors with high levels of DNA methylation at that locus, by comparing the 
90th percentile of tumors to the mean of the fallopian tube samples.  

We describe the strategy for identifying epigenetically silenced genes in detail in the 
methods section. In brief, we apply four separate filtering criteria: 1) low mean DNA 
methylation in fallopian tube samples, 2) large difference in DNA methylation between 
the 90th percentile tumor and mean fallopian tube methylation, 3) large difference in 
mean gene expression between the fallopian tubes, and the 10% of tumor samples with 
the highest DNA methylation for that gene, and 4) strong inverse correlation between 
DNA methylation and gene expression. For each filter, we established a relaxed threshold 
and a stringent threshold. To set minimal criteria for each filter, while capturing genes 
with different silencing patterns and frequencies, we required candidate epigenetically 
silenced genes to pass all four relaxed thresholds, and at least three out of four more 
stringent thresholds. 

The list of genes resulting from our analysis should be considered a preliminary list of 
epigenetic silencing candidates. This list will have likely missed some important, 
functionally relevant silenced genes, while including others inappropriately. These 
candidate genes for which we have observed correlative evidence for epigenetic 
silencing, will require experimental validation by promoter methylation cassette analysis 
or DNA methyltransferase inhibitor treatment of cell lines. A complete list of the 168 
genes with evidence for epigenetic silencing is provided in Table S7.1. 

BRCA1 is one of the 168 genes identified with this method. A scatterplot of DNA 
methylation versus gene expression is shown in Figure S7.1A. BRCA1 silencing via 
promoter hypermethylation has been reported previously in breast and ovarian cancer 
(PMID: 10749912), and recent studies have reported BRCA1 hypermethylation in varying 
percentages of ovarian cancer patients, but mostly within 10-20% (PMID: 11034065; 
PMID: 10749912; PMID: 18208621). With the procedure described in the supplemental 
methods below, we identified 56 out of 489 samples (11.5%) with BRCA1 inactivation 
via promoter hypermethylation in the current high-grade, high stage serous ovarian 
cancer cohort (indicated by blue dots in Figure S7.1A).  We validated the BRCA1 
promoter hypermethylation with the MethyLight technology (PMID: 10344733; 
10734209). MethyLight is a real-time PCR based method for DNA methylation 
quantification. The MethyLight PMR value (See Methods) for BRCA1 showed strong 
correlation (Pearson Correlation Coeffient = 0.78-0.90) with the beta values measured by 
the four BRCA1 probes (Figure S7.2). A receiver operating characteristic (ROC) curve 
(Figure S7.3) showed that the PMR values correlate very well with the BRCA1 
epigenetic silencing calls, with an AUC of 0.99. Using PMR>10 as the cutoff for  
promoter hypermethylation, as described by Weisenberger et al (PMID: 16804544), 
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MethyLight confirms the promoter hypermethylation in 55 of the 56 samples (98.2%) 
previously identified on the Infinium platform, and the absence of such methylation in 
436 of the 441 samples (98.9%), including 433 tumors and 8 normal fallopian tube 
samples previously identified to be negative of BRCA1 epigenetic silencing. Overall, the 
two methods showed concordance on 491 of the 497 samples (98.8%), and confirmed the 
observed BRCA1 epigenetic silencing. 

Notably, BRCA1 epigenetic silencing is mutually exclusive with all BRCA1/2 
mutations (the pathway section of the main text). A previous population based study 
showed that BRCA1 epigenetic silencing was only seen in ovarian cancer patients without 
a family history associated with a breast/ovarian cancer syndrome (PMID: 11034065), 
suggesting that BRCA1 promoter hypermethylation is unlikely to be inherited, but rather 
an acquired somatic change that leads to BRCA1 inactivation in sporadic ovarian cancers. 
BRCA1 hypermethylated cases are considerably younger and occur more frequently than 
the BRCA1 somatic mutation cases. This suggests that epigenetic silencing of BRCA1 
might be a more efficient somatic mechanism of inactivation for this gene than mutation.  

RAB25  (Figure 7.1B) is ranked highest among the 168 genes, based on the DNA 
methylation-expression correlation. Previously, RAB25 was reported to have a >1.3-fold 
copy number increase in about half of advanced serous epithelial ovarian cancers and 
marked mRNA up-regulation in most of ovarian cancers, compared to normal ovarian 
epithelium, and the copy number and expression levels of RAB25 were associated with 
disease-free survival or overall survival in ovarian and breast cancers (PMID: 15502842). 
RNA interference targeting RAB25 has been showed to slow down cell proliferation and 
inhibit tumor growth in in vivo and in vitro ovarian cancer models (PMID: 17393986). 
Other papers also highlight the role of RAB25 in cancer development. Somewhat contrary 
to these reports on ovarian and breast cancers, a recent paper (PMID: 20197623) 
indicated that loss of RAB25 promotes intestinal neoplasia, and is associated with human 
colorectal adenocarcinomas. Our study did not observe significant amplification of this 
region. On the contrary, our results indicate that RAB25 down-regulation actually occurs 
in a subset of ovarian tumors (Figure S7.1B). This result, in line with the reported RAB25 
loss in intestinal neoplasia, suggests that loss of RAB25 might play a role in ovarian 
tumorigenesis. 

Among the 168 genes, AMT (Figure S7.1C), SPARCL1 (Figure S7.1D) and CCL21 
(Figure S7.1E), are also noteworthy because they show promoter hypermethylation in 
the vast majority of tumors. SPARCL1, a member of the SPARC family and anti-adhesive 
extracellular matrix protein, was originally shown to be down-regulated in many 
epithelium-derived cancers (PMID: 9485012; PMID: 9443398). A gene closely related to 
SPARCL1, SPARC, has been shown to have tumor-suppressor activity in human ovarian 
epithelial cells (PMID: 8649850), and one driver mutation of SPARC was observed in our 
study. Loss of SPARCL1 expression has been shown to be associated with increased 
proliferation and cell cycle progression (PMID: 10735494), highlighting its role in 
tumorigenesis. CCL21 has been shown to be a chemoattractant for T cells and dendritic 
cells (PMID: 9927506). Anti-tumor properties of this gene have been attributed to its role 
as a chemo-attractant (PMID: 12740040) and as an angiostatic modulator (PMID: 
10925282).  
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Discovery of DNA methylation subgroups 
Using the resampling-based consensus clustering method as previously described (S. 

Monti, et al.  Consensus Clustering: A resampling-based method for class discovery and 
visualization of gene expression microarray data, Machine Learning Journal, 52(1-2):91-
118, 2003.), we identified four DNA methylation clusters (Figure S7.3). However, there 
is no clear evidence for the existence of a well-defined CpG Island Methylator Phenotype 
(CIMP), as has been identified for colorectal carcinoma (PMID: 10411935) and 
glioblastoma (PMID: 20399149), characterized by concerted hypermethylation at CpG 
islands. There is a moderate, but statistically significant overlap between DNA 
methylation clusters and gene expression subtypes (p<2.2*10-16, χ 2 test. Table S7.3), 
Adjusted Rand Index = 0.07).  

Patients belonging to the four clusters differ significantly in age at diagnosis (One-
way ANOVA, p=5*10-7) (Figure S7.4B). The mean ages of the patients in the four 
clusters are 59.1, 65.8, 57.1, and 62.1 for MC1, MC2, MC3, and MC4, respectively. 
Tukey HSD test revealed that the real differences lie between clusters MC1 and MC2 
(adjusted p=0.0005), between MC2 and MC3 (adjusted p=0.000002), and between MC3 
and MC4 (adjusted p=0.0009). 

Patients in the four DNA methylation clusters also differ significantly in overall 
survival with data censored at five years (Median survival time: Cluster MC1 – 48.9 
months, Cluster MC2 – 35.8 months; Cluster MC3 – 40.9 months; Cluster MC4 – 43.6 
months; Logrank test, p=0.04.) (Figure S7.4A). After adjusting for age using the Cox 
regression model, Cluster MC1 has the best survival and Cluster MC3 has a significantly 
worse survival compared to Cluster MC1 (Hazard Ratio = 1.43, p=0.04). Cluster MC2 
has marginally significantly worse age-adjusted survival (Hazard Ratio = 1.42, p=0.09) 
than MC1.  

The four DNA methylation clusters differ significantly in their frequencies of BRCA 
inactivation events (p=4.9*10-6, Fisher’s exact test), which include BRCA1/2 mutation 
and BRCA1 epigenetic silencing. Altogether, Cluster MC1 and MC3 have the highest 
frequencies of BRCA inactivation (46.6% and 44.5%, respectively), while Cluster MC2 
has the lowest such frequency (13.2%, Table S7.2). This trend holds true when we 
stratify the BRCA inactivation events to epigenetic silencing (p=1.0*10-5, Fisher’s exact 
test) and BRCA1/2 mutation events (p=0.04, Fisher’s exact test).  

Although the four DNA methylation clusters differ in their DNA methylation profiles 
and their biology, the overall average silhouette width (P.J. Rousseeuw. Silhouettes: a 
graphical aid to the interpretation and validation of cluster analysis. 1987. Journal of 
Computational and Applied Mathematics. 20. 53-65.) is poor (0.02), indicating weakly 
defined clusters with substantial within-group heterogeneity. Indeed, other clustering 
methods yield varying subgroupings of the tumors based on their DNA methylation 
profiles. Therefore, the DNA methylation cluster memberships reported here should be 
considered preliminary, with alternative groupings possible. Nevertheless, the significant 
overlap with expression clusters, and other biological differences between the DNA 
methylation clusters suggest some validity to these subdivisions. 

 
Batch Effect In TCGA DNA Methylation Data 
 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature10166

WWW.NATURE.COM/NATURE | 62



Prevalent batch effects were observed in the DNA methylation dataset (affecting 
78.8% of the features, F test), consisting of 489 tumor samples, as also discussed by Leek 
et al (PMID: 20838408). Principal component analysis (PCA) shows that the second PC 
is significantly associated with batch (adjusted R-square = 0.59).  

A natural solution would be to employ normalization tools to remove the technical 
variation associated with batch. However,  DNA methylation data expressed as beta 
values do not fit the assumptions for existing normalization methods developed for gene 
expression, such as quantile normalization and loess normalization(PMID: 20125086). 
Most of these methods assume that most genes are not expressed and/or that most genes 
are not differentially expressed. However, neither assumptions hold for DNA methylation 
data, where global hypomethylation observed in many cancers may affect a majority of 
probes. Moreover, samples can differ substantially in their total methylcytosine content. 
Quantile normalization would erase such differences. Meanwhile, for beta-distributed 
data like DNA methylation beta values, the variance is associated with the mean 
(heteroscedasticity). Therefore, we cannot apply linear model-based methods without 
transforming the data properly (logit or probit). This heteroscedasticity also hinders us 
from a simple application of empirical Bayes normalization methods like ComBat 
(PMID: 16632515) since the variances of different probes cannot be modeled as the 
same. In other words, there is a lack of a reasonable prior. 

What is more, there are substantial biological differences across batches. For 
example, five-year survival rate (Logrank test, p=0.04, for differences across batches) 
differ from 0% (Batch 9) to 58% (Batch 11). The known or unknown confounding 
biological differences between batches may result in removing biology in the 
normalization process. While putting in a design matrix to adjust for the known 
biological factors is feasible, the unknown confounding biological difference is a more 
serious problem. While well-established methods to remove unknown factors such as 
surrogate variable analysis (PMID: 17907809) are outstanding methods in dealing with 
unknown factors, will actually be undesirably harsh for unsupervised analyses aimed at 
finding molecular subtypes. We, however, advise the use of this method in supervised 
analyses with TCGA data. This confounding biology reemphasizes the importance of 
randomized experimental design in high-throughput studies, as has been emphasized by 
Verdugo et al and Leek et al (PMID: 19617374, 17907809) 

Although most of the probes are susceptible to the batch effect, the size of the batch 
variation is small. The mean absolute beta values difference across pairwise comparison 
of different batches is 0.030 (median difference 0.026) for the probes that varied 
significantly across batches. Given the complications discussed above, we chose not to 
normalize the data in a way that might remove biological differences or introduce 
artifacts, but rather focus our analyses on probes with large biological variation and 
limited technological variation. For the clustering analysis, we removed probes with 
relatively large batch variation using technical replicates (weighted average of deviation 
from equality of >0.05, as described in the method section). By combining this filtering 
approach with a selection of the most variant probes, we were able to obtain a dataset in 
which the large biological variation predominates over the weak technical variation. 
None of the top ten PCs were associated with batch in the reduced data set used for 
clustering. Cohen’s f2 (PMID: 19565683) for the 858 probes range from 0.004 to 0.183, 
with a mean of 0.029 (1st quartile: 0.018, 3rd quartile: 0.035). 857 probes out of 858 have 
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an effect size of smaller than medium (rule of thumb 0.15; equivalent to a multiple 
regression R of 0.13). On average, only about 2.8% of the variance for each probe is 
explained by batch in the dataset used for clustering. We can also see from the bottom 
side bar in Figure S7.4 that analytical batch is not driving the clustering. For the 
epigenetically silenced genes, we used large effect size as the threshold, rather than 
statistical significance. Here, we also observed that batch effects do not have a 
deterministic role in the epigenetically silenced genes identified. We would advise those 
who use the TCGA DNA methylation data to be aware of the  technical variation in the 
data, and to consider developing normalization methods appropriate for beta-distributed 
DNA methylation data.  
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Supplemental Methods for DNA Methylation 
 
DNA Methylation Assays 

We performed the Illumina Infinium DNA methylation assay on 519 TCGA ovarian 
samples and eight fallopian tube samples from Batches 9,11-15 and 17-19, 21-22, and 
batch 24. The Illumina Infinium HumanMethylation27 arrays interrogate 27,578 CpG 
sites located in proximity to the transcription start sites of 14,475 consensus coding 
sequencing in the NCBI Database (Genome Build 36). Bisulfite conversion was 
performed on 1 µg genomic DNA from each patient using the Zymo EZ96 kit (Zymo 
Research, Orange, CA) as recommended by the manufacturer. We evaluated DNA 
quantity and completeness of bisulfite-conversion using MethyLight control quality 
control (QC) reactions as previously described (PMID: 18987824). All TCGA samples 
passed these QC tests and entered the Infinium DNA methylation assay pipeline. 

Bisulfite-converted DNA was whole genome amplified and enzymatically 
fragmented. The bisulfite-converted, WGA-DNA samples were then purified and 
hybridized to the BeadChip arrays, in which bisulfite-converted DNA molecules anneal 
to locus-specific DNA oligomers that are bound to individual bead types. Each CpG 
locus can hybridize to methylated (CpG) or unmethylated (TpG) oligo bead types. DNA 
methylation-specific primer annealing is followed by single-base extension using labeled 
nucleotides. Both unmethylated and methylated bead types for a specific CpG locus 
incorporate the same labeled nucleotide, as determined by the base immediately 
preceding the cytosine being interrogated by the assay, and subsequently will be detected 
in a single channel. Each beadchip, containing 12 subarrays, was then fluorescently 
stained after extension, scanned, and the intensities of the methylated (M) and 
unmethylated (U) bead types for each CpG locus across all samples are measured. Mean 
non-background corrected M and U signal intensities for each locus were extracted from 
Illumina BeadStudio (or GenomeStudio) software. The beta value DNA methylation 
scores for each sample and locus were calculated as (M/(M+U)).  

Detection p-values were calculated by comparing the set of analytical probe replicates 
for each locus to the set of 16 negative control probes. The negative controls are modeled 
by normal distribution. The detection p-value for the probe with intensity Iprobe , is 
calculated as: 1-Z( (|Iprobe-µneg |)/σneg ). In this formula, µneg and σneg are the average and 
the standard deviation of the signals from the negative controls, and Z is the one-sided 
tail probability of the standard normal distribution.  For each probe, the detection p-
values are calculated separately for methylated and unmethylated probe signal intensities, 
and the smaller detection p-value was taken as the final detection p-value for the probe. 
Data points with detection p-values > 0.05 were deemed not significantly different from 
background, and were masked as "NA".  

 
TCGA Data Packages 

The data levels and the files contained in each data level package are described below 
and are present on the TCGA Data Portal website (http://tcga.cancer.gov/dataportal). 

LEVEL 1: Level 1 data contain the non-background corrected signal intensities of the 
methylated (M) and unmethylated (U) probes and the mean negative control cy5 (red) 
and cy3 (green) signal intensities. A detection p-value for each data point, the number of 
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replicate beads for methylated and unmethylated bead types as well as the standard error 
of methylated and unmethylated signal intensities are also provided for each sample and 
probe. Similar values are also provided for the negative control probes. It is important to 
note that the identity of the dye is representative of the nucleotide adjacent to the CpG 
dinucleotide. The methylation discrimination is derived from separate measurements 
from the two different types of beads present for each locus. For some loci, both 
measurements will be cy3, and for others both will be cy5. To resolve ambiguities 
regarding this subtlety of the Infinium DNA Methylation assay, we have labeled the cy3 
and cy5 values deposited as level 1 data to the TCGA Data Coordination Center (DCC) 
as “Methylated Signal Intensity” and “Unmethylated Signal Intensity”. The information 
of which dye is used for each locus is supplied in the manifest deposited with the DCC. 

LEVEL 2: Level 2 data files contain the beta value calculations for each probe and 
sample. Data points with detection p-values > 0.05 were deemed not significantly 
different from background, and were masked as NA. 

�LEVEL 3: Level 3 data contain beta value calculations, gene IDs and genomic 
coordinates for each probe on the array. In addition, data for probes that contain known 
single nucleotide polymorphisms (SNPs) after comparison to the dbSNP database (Build 
128) and data for probes that contain repetitive element DNA sequences in more than 10 
bp of each 50 bp probe sequence are masked with an “NA” descriptor. 

The data packages used for the following analyses are listed below. Please note that 
with continuing updates of genomic databases, data archive revisions become available at 
the TCGA data portal. The following data archives were used for the analyses described 
in this manuscript: 
Batches 9 and 11: jhu-usc.edu_OV.HumanMethylation27.Level_3.1.3.0 
 (Batches 9 and 11 included all fallopian tube samples) 
Batch 12: jhu-usc.edu_OV.HumanMethylation27.Level_3.2.3.0 
Batch 13: jhu-usc.edu_OV.HumanMethylation27.Level_3.3.3.0 
Batch 14: jhu-usc.edu_OV.HumanMethylation27.Level_3.4.2.0 
Batch 15: jhu-usc.edu_OV.HumanMethylation27.Level_3.5.1.0 
Batch 17: jhu-usc.edu_OV.HumanMethylation27.Level_3.6.1.0 
Batch 18: jhu-usc.edu_OV.HumanMethylation27.Level_3.7.1.0  
Batch 19: jhu-usc.edu_OV.HumanMethylation27.Level_3.8.1.0  
Batch 21: jhu-usc.edu_OV.HumanMethylation27.Level_2.9.0.0  
Batch 22: jhu-usc.edu_OV.HumanMethylation27.Level_2.10.0.0  
Batch 24: jhu-usc.edu_OV.HumanMethylation27.Level_2.11.0.0  

During the course of data production, the platform manifest was updated to reflect 
current HUGO gene symbols, and to mask probes containing recently identified SNPs or 
repeats. This manifest update started with Batch 21. To ensure consistent gene symbol 
usage across all batches within this study, we used Level 2 data for batches 21, 22, and 
24, and generated Level 3 data for these batches using identical procedures as for the 
earlier batches (masking the same probes, and reconciling gene symbols).  
 
 
Cancer-associated epigenetic silencing 

We used Level 3 DNA methylation data on 23,679 DNA methylation probes, and the 
median-integrated gene expression data set on 18,868 genes. The median based 
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integrated expression data set was assembled using row-centered Level 3 data generated 
on the LBL-HuEx, UNC-Agilent and Broad-U133A platforms.  This data set included 
every gene and every samples that has been profiled on one of these platform. If a gene 
was only assayed on one platform (n=1,116), this measurement was used. If the gene was 
assayed on two platforms (n=5,890), the average of the two measurements was used; if 
the gene was assayed on all platforms (gene on all three platforms n=11,864) the median 
measurement was used. This data set contains 541 samples (including 8 fallopian tube 
samples) and 18,868 genes. A set of 21,273 Infinium probes that interrogate 12,233 genes 
have matched gene expression data. We determined the Spearman correlation between 
DNA methylation and gene expression for 497 samples (including 489 tumor samples 
and eight fallopian tube samples. We used the non-parametric Spearman method, as 
bivariate normality could not be assumed (DNA methylation data are not normally 
distributed). Spearman's rank correlation coefficient (ρ) on the gene expression and DNA 
methylation was computed for each probe, along with a p value testing against the null 
hypothesis that ρ truly equals zero. The Benjamini-Hochberg procedure was used to 
control the false discovery rate. Given the small sample size for the fallopian tubes, we 
excluded 49 probes that failed on any of the fallopian tube samples, with 23,630 DNA 
methylation probes remaining, of which 21,229 covering 12,206 genes, could be matched 
to expression. 
 

We describe below the strategy used to identify candidate epigenetically silenced 
genes. We apply four separate filtering criteria. The thresholds for each filter were 
selected based on inspection of scatterplots of DNA methylation versus gene expression 
for the genes passing the relevant filter criterion in the current data set. The four filters 
are: 

1) The sample mean beta value of eight normal fallopian tubes with a relaxed 
threshold of 0.5 and a stringent threshold of 0.4.  

2) The difference in DNA methylation between the 90th percentile tumor  and mean 
fallopian tube methylation, with a relaxed threshold of 0.1 and a stringent threshold of 
0.3. 

3) The fold difference in mean gene expression between the fallopian tubes, and the 
10% of tumor samples with the highest DNA methylation for that gene, with a relaxed 
threshold of 2-fold and a stringent threshold of 3-fold. 

4) Spearman’s correlation coefficient between DNA methylation and gene expression 
calculated jointly across 489 tumor and 8 fallopian samples, with a relaxed ρ threshold of 
–0.2 and a stringent threshold of –0.3. 

We required candidate epigenetically silenced genes to pass all four relaxed 
thresholds, and at least three out of four more stringent thresholds. If there were multiple 
CpGs for the same gene promoter, the CpG with the highest absolute Spearman’s Rho 
was retained for that gene. A complete list of the 168 genes is shown in Table S7.1, 
ranked by descending absolute Spearman’s Rho. 

 
Definition of BRCA1 epigenetically silenced cases 

We analyzed the relationship between DNA methylation and gene expression for nine 
different probes located in or near the BRCA1 promoter region, and found statistically 
significant inverse correlations for four of the nine probes (cg19531713, cg19088651, 

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature10166

WWW.NATURE.COM/NATURE | 67



cg08993267, cg04658354). The target CpG sites of those probes are located in the CpG 
island that contains the transcription start site of BRCA1. The Spearman ρ of these 
correlations ranges from –0.28 to –0.37 (Benjamini-Hochberg adjusted P<0.0001). We 
did not see good inverse correlations for the other five probes located in other two CpG 
islands further away from the transcription start site.  

For each of the aforementioned four probes, we used K-means clustering (assuming 
K=2) on the two-dimensional space of DNA methylation and expression data to separate 
the epigenetically silenced group and non-epigenetically silenced group of samples. 
Expression data were scaled to have the same range as DNA methylation data for this 
clustering. We then combined the calls from the four probes. Since data was lacking for 
some probes in some samples, we relied on the fraction of the four probes calling a 
particular sample epigenetically silenced for BRCA1, rather than on a fixed number of 
probes. Samples with >50% consensus on belonging to the epigenetically silenced group 
across the four probes were classified as samples with silencing of BRCA1 by promoter 
hypermethylation.  

 
Validation of BRCA1 epigenetic silencing with MethyLight 

The Infinium DNA Methylation data for the BRCA1 promoter was valiadated for all 
489 TCGA ovarian serous adenocarcinoma samples using MethyLight technology 
(PMID: 10344733; 10734209; 16326863; 16804544). The BRCA1-M1 MethyLight assay 
(HB-045) utilized primer and probe oligomers described previously (PMID: 15159323). 
MethyLight data are reported as a ratio between the value derived from the real-time PCR 
standard curve plotted as log (quantity) versus threshold C(t) value for the BRCA1 
methylation reaction and likewise for a methylation-independent control reaction based 
on interspersed ALU repeats (PMID:16326863; 16804544). This calculation was 
performed for both the sample and an M.SssI-treated genomic DNA sample, which was 
used as a methylated reference. We calculated the percent of methylated reference (PMR) 
for each sample as: 100 X (BRCA1-M1 / ALU)sample / (BRCA1-M1 / ALU)M.SssI-
Reference. 
 
Unsupervised clustering analysis for DNA methylation subtype discovery 

We performed unsupervised clustering analysis on 489 high-grade, high-stage TCGA 
samples based on DNA methylation data. We first removed 3,899 probes containing a 
single nucleotide polymorphism (SNP) within five base pairs of the target CpG site and 
those containing repeat element sequences of ≥10 base pairs. 

Most normalization methods developed for gene expression arrays are not suitable for 
Infinium DNA methylation data for the following reasons: 1) The Cy3 and Cy5 dyes are 
not tied to the methylation status of the probes, 2) The majority of loci cannot be assumed 
to be unmethylated, 3) The total signal or methylation levels of different samples cannot 
be assumed to be equal, and 4) The measurements of the methylated and unmethylated 
probes are not independent. Moreover, we observed significant differences in biology and 
clinical parameters between analysis batches of samples. Therefore, rather than attempt to 
dissociate biology from technical batch effects through normalization, we chose to rely 
on robust probes for the unsupervised clustering, by eliminating probes that introduce 
technical noise. We compared technical replicates of the same sample (TCGA-07-0227) 
that were measured across ten different batches, to identify probes that are prone to 
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variation across batches. The underlying assumption is that technical replicates should 
yield identical beta values for each probe. We determined the deviation from this 
assumption for each probe by calculating the distance of point (x,y) to y=x, in which x is 
the beta value of that probe for the same sample in one batch, and y the beta value for the 
other batch. Mathematically, this distance (D) can be calculated as D=(y-x)/√2) for each 
probe. We then calculated the rank-weighted mean (with penalty for probe failures) of the 
distances (D) calculated from 45 pair-wise comparisons for each of the 23,679 probes. To 
exclude as much technical noise as possible, we removed 10,589 probes with a weighed 
mean D greater than 0.05. Of the remaining 12,990 probes, we selected the most variant 
858 probes for the clustering analysis. The variant probes were selected as the union of 
top 5% of probes with the largest standard deviation and top 5% with the largest adjusted 
standard deviation (σ’) normalized for the Bernoulli distribution standard deviation for 
the associated mean (σ’=σ/(√(µ(1-µ)))), since the maximal standard deviation of a beta 
distribution is influenced by its mean, and equals the standard deviation of a Bernoulli 
distribution. 

Ovarian DNA methylation subtypes were discovered using consensus clustering 
(GenePattern, v 3.2.3. PMID: 16642009). The optimal number of clusters was determined 
with 1,000 resampling iterations (seed value: 12,345) using K-means clustering algorithm 
for K=2,3,4,…,10, with Euclidean distance as the distance measure. 

We developed signatures for the clusters by selecting the top 50 probes for each 
cluster compared to the other clusters. The union of the probes (192 unique probes) was 
then clustered on the 489 samples to generate Figure 3. The R software (version 2.11.1) 
(http://www.r-project.org) was used for all data analyses. 

 
Batch Effect Investigation 
A fast singular value decomposition (SVD) done with the corpcor R package was 

used to extract the principal components (PCs). Each of the top ten PCs was tested for 
association with batch using linear regression. A univariate F test was used to test for the 
association of each probe and analytical batch. The Benjamini-Hochberg method was 
used to adjust for multiple comparisons and control the false-discovery rate. Cohen’s f2 
was used to assess the effect size of the batch effect. 

 
Other statistical analyses 

Pearson’s χ 2 test was used to assess the unequal distributions of categorical outcomes 
(e.g., differences in the frequencies of BRCA1 inactivation events across DNA 
methylation clusters), with DNA methylation clusters. For covariates with fewer than five 
observations in any cell in the R*C contingency table, Fisher’s exact test was used 
instead. A Logrank test was used to test against the null hypothesis that there was no 
difference between the Kaplan-Meier survival curves. Proportional hazards regression 
(Cox Regression) was used for parametric analysis to estimate hazard ratios associated 
with unit changes in any continuous variable, or the comparison of survival after 
adjusting for other variables, or test for an interaction term between two variables. The 
differences were considered significant if the two-sided p values are <0.05. All statistical 
tests were performed in R (http://www.r-project.org). 
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Table S7.1. A list of the 168 candidate epigenetically silenced genes. Genes are ranked 
by descending absolute Spearman’s Rho. For genes with multiple CpG probes, we have 
listed the probe with the strongest inverse correlation. 

Official Gene Symbol ProbeID 
Sample Mean Beta Values  of 
Fallopian Tube Beta Value Difference 

Log2 
(Fold Change) Spearman's Rho 

RAB25 cg19580810 0.33 0.50 4.57 -0.89 

LYPLAL1 cg02665570 0.28 0.46 2.77 -0.86 

ZNF597 cg24333473 0.13 0.60 2.11 -0.77 

VTCN1 cg22424746 0.43 0.30 4.51 -0.76 

VSIG2 cg02082342 0.37 0.43 2.58 -0.75 

BANK1 cg25023994 0.33 0.41 1.96 -0.74 

C3 cg17612991 0.35 0.43 5.07 -0.74 

DNALI1 cg21488617 0.22 0.38 3.11 -0.72 

LDHD cg03991512 0.15 0.55 1.31 -0.70 

UBB cg06537829 0.16 0.48 3.29 -0.69 

LTC4S cg11394785 0.08 0.66 1.98 -0.68 

SULT1C4 cg17966192 0.19 0.45 1.09 -0.67 

NAP1L5 cg12759554 0.49 0.37 1.93 -0.67 

CFTR cg25509184 0.17 0.71 2.26 -0.65 

CMBL cg11882252 0.10 0.70 2.41 -0.64 

TMEM173 cg16983159 0.10 0.40 2.90 -0.63 

EYA4 cg21296676 0.35 0.47 2.46 -0.62 

S100A16 cg23851011 0.45 0.35 1.68 -0.62 

LRG1 cg24926276 0.29 0.26 3.62 -0.62 

ALDOC cg06367117 0.13 0.57 1.25 -0.61 

CDO1 cg07644368 0.40 0.44 2.08 -0.61 

ZNF671 cg19246110 0.11 0.75 1.45 -0.59 

ZNF502 cg21672276 0.11 0.21 2.18 -0.58 

TSPYL5 cg15747595 0.22 0.47 3.80 -0.58 

MT1E cg20083730 0.06 0.31 2.42 -0.57 

TRIM4 cg01626227 0.06 0.32 1.92 -0.56 

CFI cg12243271 0.28 0.23 3.16 -0.56 

DNAJB13 cg19692710 0.36 0.31 1.87 -0.56 

AQP9 cg11098259 0.23 0.39 2.98 -0.56 

THY1 cg12508624 0.12 0.64 1.21 -0.55 

CDH16 cg14221831 0.43 0.36 1.66 -0.55 

KLK11 cg09702010 0.20 0.38 4.00 -0.55 

CLIP3 cg06432655 0.23 0.44 1.49 -0.55 

NUPR1 cg05590982 0.18 0.44 2.68 -0.54 

EHF cg18414381 0.27 0.14 2.79 -0.54 

UQCRH cg21576698 0.42 0.49 3.30 -0.54 

LCN12 cg19534945 0.40 0.46 2.29 -0.54 

TMEM71 cg20955688 0.16 0.53 1.97 -0.54 

TMEM140 cg06456031 0.20 0.33 1.32 -0.54 

SCG5 cg15787039 0.14 0.36 2.43 -0.54 
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KLK10 cg06130787 0.15 0.21 1.81 -0.54 

WT1 cg16463460 0.18 0.25 4.79 -0.53 

SCARA3 cg26847866 0.15 0.22 2.51 -0.53 

APOL6 cg19853703 0.07 0.14 1.92 -0.52 

SLAIN1 cg08504583 0.38 0.45 2.25 -0.52 

PCDHB5 cg03349953 0.17 0.51 2.03 -0.51 

HSPB2 cg13210534 0.12 0.33 1.65 -0.51 

CHI3L2 cg26366091 0.22 0.39 1.09 -0.51 

SLC15A2 cg10523671 0.36 0.53 2.43 -0.50 

RBP1 cg13099330 0.09 0.58 3.53 -0.50 

CDH6 cg10919204 0.34 0.38 1.60 -0.50 

LRRC34 cg24777454 0.10 0.50 3.13 -0.50 

SPDEF cg07705908 0.34 0.21 1.66 -0.50 

PDLIM4 cg01305625 0.35 0.23 1.61 -0.49 

RERG cg19205533 0.31 0.38 4.03 -0.49 

EFS cg07197059 0.22 0.47 1.06 -0.49 

HSPA1A cg05920090 0.04 0.18 3.93 -0.49 

HOXB8 cg15539420 0.33 0.38 1.13 -0.49 

MFAP4 cg09606564 0.19 0.45 3.35 -0.48 

AMT cg25021247 0.38 0.35 1.90 -0.48 

CRAT cg26805528 0.17 0.55 1.64 -0.48 

PCDHB2 cg02260587 0.16 0.45 1.80 -0.48 

CRISPLD1 cg01410472 0.05 0.31 2.88 -0.48 

HOXB2 cg09313705 0.31 0.32 3.24 -0.48 

FXYD1 cg27461196 0.36 0.31 2.99 -0.47 

APOBEC3G cg26022401 0.09 0.24 3.43 -0.47 

HP cg06172871 0.39 0.30 3.00 -0.46 

ZNF300 cg19014419 0.12 0.24 1.97 -0.46 

TRIM22 cg12461141 0.32 0.39 3.31 -0.46 

RIPK3 cg20822579 0.21 0.36 1.54 -0.45 

HLA-DMA cg14833385 0.12 0.11 3.47 -0.45 

DDR2 cg22740835 0.15 0.69 2.42 -0.45 

STAT5A cg03001305 0.22 0.33 1.24 -0.45 

WDR69 cg14329157 0.26 0.45 5.30 -0.45 

PTGDS cg11546621 0.41 0.37 2.62 -0.45 

DDO cg20011134 0.34 0.46 1.34 -0.44 

GYPC cg13901526 0.22 0.54 2.27 -0.44 

PAM cg20131596 0.20 0.28 2.20 -0.44 

CRYAB cg15227610 0.33 0.40 2.90 -0.44 

FADS2 cg06781209 0.17 0.47 1.20 -0.44 

FCGRT cg15528736 0.31 0.47 1.92 -0.43 

ARSE cg11964613 0.35 0.48 1.32 -0.43 

RNASE1 cg05958352 0.41 0.35 1.62 -0.43 

AGT cg19125606 0.43 0.44 1.95 -0.43 

TBX2 cg12163132 0.19 0.12 2.36 -0.43 

PKIA cg04689061 0.17 0.37 1.22 -0.42 

THNSL2 cg07952391 0.08 0.27 2.05 -0.41 
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FOXJ1 cg24164563 0.08 0.19 3.66 -0.41 

CPNE8 cg23495733 0.13 0.72 1.68 -0.41 

CYBRD1 cg10731149 0.12 0.14 1.64 -0.41 

IL20RA cg22487322 0.43 0.35 3.08 -0.41 

SPATA18 cg09022993 0.10 0.51 4.31 -0.40 

PLSCR4 cg24315815 0.27 0.22 2.99 -0.40 

C1S cg05538432 0.35 0.28 3.59 -0.40 

VNN2 cg10044101 0.45 0.34 1.79 -0.40 

TMEM101 cg12259256 0.09 0.59 2.92 -0.39 

FOLR1 cg03699566 0.30 0.23 3.56 -0.39 

VAMP5 cg11108890 0.30 0.54 1.36 -0.39 

GSTM2 cg16670497 0.04 0.11 1.69 -0.39 

PART1 cg09712066 0.37 0.12 3.50 -0.38 

PNOC cg03642518 0.24 0.26 3.26 -0.38 

SEMA3E cg18464137 0.14 0.41 1.10 -0.38 

SERPINA3 cg06190732 0.31 0.44 4.76 -0.38 

TRIM59 cg10273210 0.09 0.32 1.18 -0.38 

LIMS3 cg18879041 0.20 0.13 3.81 -0.38 

CYP4B1 cg23440155 0.16 0.16 4.08 -0.38 

SPAG6 cg06908778 0.20 0.62 4.94 -0.38 

OVGP1 cg09558502 0.13 0.10 6.66 -0.38 

SERPINB1 cg06148264 0.16 0.13 3.02 -0.38 

GIMAP2 cg25918245 0.24 0.24 1.96 -0.37 

CLEC11A cg13152535 0.26 0.32 1.12 -0.37 

IQGAP2 cg02387679 0.14 0.49 1.08 -0.37 

WIT1 cg19718882 0.10 0.13 2.10 -0.37 

KIAA1324 cg16797831 0.13 0.40 3.78 -0.37 

ANGPTL1 cg07044282 0.39 0.20 2.64 -0.36 

MCAM cg21096399 0.29 0.34 1.00 -0.36 

CRIP1 cg02000005 0.18 0.37 2.65 -0.36 

SLC47A2 cg24743310 0.36 0.16 3.66 -0.36 

GNB4 cg17483510 0.10 0.36 1.22 -0.36 

GAS2L2 cg24922045 0.30 0.17 2.26 -0.35 

ZMYND12 cg06346081 0.16 0.14 2.36 -0.35 

ALDH3B1 cg07730301 0.16 0.13 1.86 -0.35 

SLC44A4 cg07363637 0.38 0.16 4.05 -0.35 

NUAK1 cg23555120 0.48 0.36 1.63 -0.35 

HOXB5 cg01405107 0.13 0.48 1.89 -0.35 

LY75 cg23995753 0.23 0.32 2.68 -0.35 

CXCR7 cg03626672 0.17 0.16 1.92 -0.35 

PLAT cg12091331 0.14 0.19 3.65 -0.34 

CTSO cg11754095 0.10 0.11 2.60 -0.34 

ZNF655 cg13636404 0.05 0.12 1.99 -0.34 

CAMK2N1 cg08398233 0.17 0.29 1.94 -0.34 

BRCA1 cg04658354 0.06 0.46 1.17 -0.34 

ANXA6 cg21623671 0.10 0.10 1.61 -0.34 

GIPC2 cg09107315 0.32 0.44 1.38 -0.33 
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IL1R2 cg20340242 0.35 0.35 1.63 -0.33 

IGF1 cg01305421 0.43 0.35 2.23 -0.33 

KCTD14 cg17272843 0.08 0.21 2.67 -0.33 

STEAP2 cg27626102 0.13 0.23 1.92 -0.33 

NPDC1 cg26581729 0.38 0.42 3.19 -0.32 

FBLN2 cg00201234 0.30 0.40 1.14 -0.32 

H1F0 cg07141002 0.25 0.16 1.64 -0.32 

GCNT3 cg06817269 0.37 0.13 2.50 -0.32 

NDN cg12532169 0.48 0.30 3.90 -0.32 

TRIM2 cg12793610 0.23 0.20 2.04 -0.31 

CPXM2 cg09619146 0.23 0.43 2.02 -0.31 

HNF1B cg12788467 0.19 0.62 2.31 -0.31 

CTSS cg08578023 0.15 0.21 2.39 -0.31 

NME5 cg25507001 0.11 0.11 3.48 -0.31 

SLC16A5 cg09300114 0.23 0.14 1.77 -0.31 

PEG3 cg18668753 0.41 0.34 2.19 -0.30 

BLNK cg16779976 0.25 0.20 2.22 -0.30 

RARRES2 cg17279839 0.12 0.50 3.14 -0.30 

SPARCL1 cg19466563 0.16 0.62 3.47 -0.28 

CBX7 cg23124451 0.33 0.50 2.17 -0.27 

CCDC65 cg02620769 0.04 0.39 3.98 -0.27 

APH1B cg17207590 0.26 0.38 1.98 -0.27 

TSC22D3 cg00404599 0.38 0.38 1.67 -0.26 

CCL21 cg27443224 0.35 0.45 3.38 -0.25 

MRGPRF cg22933847 0.34 0.33 1.95 -0.25 

HSPA2 cg16319578 0.16 0.47 2.77 -0.24 

PENK cg24645221 0.07 0.47 1.85 -0.24 

LONRF2 cg12232463 0.36 0.47 3.29 -0.23 

SERPING1 cg09061733 0.18 0.32 2.19 -0.22 

ALDH1A3 cg21359747 0.23 0.70 1.92 -0.22 

MGP cg00431549 0.30 0.31 2.99 -0.22 

CYYR1 cg10238818 0.07 0.48 2.45 -0.21 

TCTEX1D1 cg24110050 0.25 0.56 3.80 -0.21 

AIF1 cg21440587 0.17 0.46 1.76 -0.21 
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Table S7.2. Distribution of BRCA inactivation events across promoter methylation 
clusters. 

DNA Methylation Cluster MC1 MC2 MC3 MC4 TOTAL P value 
Total 
Sample 
set 

All Samples 131 64 156 138 489 - - 
Sequenced Samples 80 38 115 83 316 - - 
Samples With Known BRCA Status* 88 38 128 84 338 - - 
  
All BRCA Inactivtion Events 41 5 57 17 120 4.9E-06 338 
All BRCA Inactivtion Events (%) 46.6% 13.2% 44.5% 20.2% 35.5% - 338 
  BRCA1 Epigenetic Silencing  19 1 30 6 56 1.0E-05 489 
  BRCA Mutation** 22 4 27 11 64 0.04 338 
  All Germline Mutations 18 2 20 6 46 0.03 338 
  BRCA1 Germline Mutation 11 1 11 4 27 0.19 338 
  BRCA2 Germline Mutation 7 1 10 2 20 0.17 338 
  All Somatic Mutations 4 2 8 5 19 0.97 338 
  BRCA1 Somatic Mutation 1 2 7 0 10 0.05 338 
  BRCA2 Somatic Mutation 3 0 1 5 9 0.09 338 
  

* 316 sequenced cases + 22 samples with epigenetic silencing but no sequencing data; due to 
the known mutual exclusivitiy observed, we assume no mutation events in those 22 samples. 
** Two cases in Cluster MC3 have both more than one mutations: TCGA-20-1684 has 
BRCA2 germline mutations and BRCA1 somatic mutation; TCGA-13-1501 has BRCA2 
germline mutations and BRCA1 germline mutation; Otherwise all inactivation events are 
mutually exclusive. 
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Table S7.3. Overlap between gene expression and DNA methylation subtypes.  

 
Differentiated Gene 
Expression Subtype

Immunoreactive Gene 
Expression Subtype 

Mesenchymal Gene 
Expression Subtype 

Proliferative 
Gene Expression 
Subtype Total 

DNA Methylation Subtype 1 (MC1) 55 31 24 21 131 
DNA Methylation Subtype 2 
(MC2) 3 2 10 49 64 
DNA Methylation Subtype 3 (MC3) 41 32 60 23 156 
DNA Methylation Subtype 4 
(MC4) 36 42 15 45 138 
Total 135 107 109 138 489 
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Figure S7.1A. Scatterplots showing BRCA1 gene expression versus promoter 
methylation. The color and size of the dots represent tissue type (red/large – fallopian 
tube samples, n=8; other colors/small – ovarian tumors, n=489. Specifically, blue dots 
represent tumors with BRCA1 epigenetically silencing; green dots represent tumors with 
BRCA1 germline mutation; purple dots represent tumors with BRCA1 somatic mutation. 
Unsequenced tumors were shown with hollow dots). Plotted in the y-axis is the relative 
mRNA expression level of BRCA1 as log ratios reported in the median-integrated 
expression data set, and in the x-axis is the DNA methylation beta value. 
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Figure S7.1B. Scatterplots showing RAB25 gene expression versus promoter 
methylation. The color and size of the dots represent tissue type (red/large – fallopian 
tube samples, n=8; black/small – ovarian tumors, n=489). 
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Figure S7.1C. Scatterplots showing AMT gene expression versus promoter 
methylation. The color and size of the dots represent tissue type (red/large – fallopian 
tube samples, n=8; black/small – ovarian tumors, n=489). 
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Figure S7.1D. Scatterplots showing SPARCL1 gene expression versus promoter 
methylation. The color and size of the dots represent tissue type (red/large – fallopian 
tube samples, n=8; black/small – ovarian tumors, n=489). 
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Figure S7.1E. Scatterplots showing CCL21 gene expression versus promoter 
methylation. The color and size of the dots represent tissue type (red/large – fallopian 
tube samples, n=8; black/small – ovarian tumors, n=489). 
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Figure S7.2. Scatter plots showing pairwise comparison of the Infinium  beta values 
and MethyLight PMR values for the 489 ovarian serous adenocarcinomas. Left four 
columns (upper four rows) are the four BRCA1 probes used for making the epigenetical 
silencing calls. The fifth column(row) shows the PMR values given by MethyLight. The 
lower left panels show the pairwise comparison for each of the five measurements. Each 
dot represents a sample. The red line indicates a Loess regression fit (alpha=1.2). The 
numbers at the upper right panels show the Pearson's Correlation Coefficient of the two 
measurements at each intersection. The Infinium probes and MethyLight probe are 
arranged by genomic location. All five are located in the same CpG Island that flanks 
BRCA1 transcription start site by the Takai Jones definition. 
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Figure S7.3. ROC curve of BRCA1 methylation validation by MethyLight. The 
ability of MethyLight measurement of BRCA1 methylation to discriminate BRCA1 
epigenetic silenced cases from non-silenced cases, as determined by the Illumina 
Infinium DNA methylation and gene expression measurements (see methods) is depicted 
as an ROC curve. ( AUC=0.99). 
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Figure S7.4. Consensus clustering was performed on 489 serous ovarian tumor 
samples with 858 Infinium probes, selected as described in Supplemental Methods. 
DNA cluster membership was determined by 1,000 resampling iterations of consensus 
clustering using the K-means algorithm. Hierarchical clustering of the 192 most 
discriminant probes is shown in the heatmap, with eight fallopian tube samples shown on 
the left. DNA methylation levels (beta value) are shown with a color spectrum as 
indicated in the color key panel, with blue indicating no methylation (beta value=0), to 
red, indicating full methylation (beta value=1). White indicates missing value. DNA 
methylation cluster memberships of the tumors are indicated by the color bar: blue, 
Cluster MC1 (n=131); green, Cluster MC2 (n=64); red, Cluster MC3 (n=156), purple, 
Cluster MC4 (n=138). Other color bars indicate various molecular features as indicated in 
the color key. There is no association between the DNA methylation clusters and 
analytical batch (bottom bar, p=0.85, χ 2 test) 
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Figure S7.5. Clinical relevance of the DNA methylation clusters. A. Kaplan-Meier 
curves showing the differential survival of the four DNA methylation clusters with five-
year censored survival data. Samples are colored according to their cluster membership 
as described in Figure S7.2. The four clusters differ in overall survival (Median survival 
time: Median survival time: Cluster MC1 – 48.9 months, Cluster MC2 – 35.8 months; 
Cluster MC3 – 40.9 months; Cluster MC4 – 43.6 months; Logrank test, p=0.04.) B. The 
distributions of age at diagnosis for patients in the three DNA methylation clusters are 
shown in the box-plots, and patients in the three DNA methylation clusters differ in age 
at diagnosis (One-way ANOVA, p=5*10-7). Tukey HSD test revealed that patients in 
cluster MC2 are an average of 6.7 years older than the patients in cluster MC1 (95% CI: 
2.33-11.15; mean age: 65.8 v.s. 59.1 years; adjusted p=0.0005) and 8.7 years (95% CI: 
4.4 -13.0 years; mean age: 65.8 v.s. 57.1 years; adjusted p=0.000002) older than cluster 
MC3 (and 57.1 years, adjusted p=0.0005 and 0.000002 respectively), and Cluster MC4 
patients are 5.0 years older than patients belonging to cluster MC3 (95% CI: 1.6 – 8.4 
years; mean age: 62.1 v.s. 57.1 years, adjusted p=0.0009). 
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8.1 Introduction 
  
We analyzed several pathways that are generally altered in different cancer types, specifically the 
RAS/PI3K, RB, and p53 signaling pathways, as well as the homologous recombination (HR) 
pathway, which has germline as well as somatic alterations in ovarian cancer. For all pathway 
analyses, we used the set of cases (N=316) with complete data (mRNA expression, DNA copy-
number, methylation, and protein mutations). 
  

Figure S8.1 outlines the assessment approach used to determine whether a particular gene was 
altered or not altered in a particular sample.  Our approach was based on first examining each 
gene across all samples, and binning each gene into one of four categories: 
 

• Category 1:  Gene is altered by mutations. 
• Category 2:  Gene is primarily altered by copy number alterations, and mRNA expression 

levels correlate with copy number changes. 
• Category 3:  Gene is epigenetically silenced. 
• Category 4:  Gene has evidence of a bimodal expression pattern, unrelated to copy 

number status. 
 
As outlined in Figure S8.1, we then used different alteration criteria for each of the four 
categories.  For example, for Category 2 genes, we classified each gene as a likely oncogene or 
tumor suppressor, and a gene was called altered in a specific sample if the gene was altered by a 
high level copy-number amplification or homozygous deletion (as defined by GISTIC, see 
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Supplemental Methods 5).  Category 3 epigenetically silenced genes were defined by k-means 
clustering; for example, for BRCA1, we used k-means clustering on the two-dimensional space of 
DNA methylation and expression data to separate the epigenetically silenced group and the non-
epigenetically silenced group of samples.  Finally, for category 4 genes, alteration status was 
defined by relative expression compared to the expression distribution in tumor samples diploid 
in the particular gene, ≥ one standard deviation.  In all categories, a gene was called altered if the 
gene contained a non-synonymous, somatic (or in the case of BRCA1/2, a germline) mutation in 
a protein-coding region.       
 
A pathway was considered altered in a given sample, if at least one gene in the pathway was 
altered. 
 

 
 

Figure S8.1. Assessment of gene alterations used in pathway analysis. 

8.2. Cancer Pathways 
 

TP53 pathway 
 
For the TP53 protein, we observe a mutation rate of 87%. With the depth of coverage of TP53 
with the hybrid capture and next generation sequencing approaches, it is possible and even likely 
that a subset of mutations in TP53 were missed raising the possibility that TP53 mutations are 
essentially universal. Samples with truncating TP53 mutations, i.e. nonsense, splice, and frame 
shift mutations (approximately one third of cases) have markedly lower TP53 expression than 
those with missense mutations or in-frame deletions (Figure S8.2), possibly caused by nonsense-
mediated decay (NMD) of mRNA (17 samples with low expression are candidates for missed 
truncating mutations). Amplifications of MDM2 and MDM4 are uncommon, occurring in 4% and 
3% of cases, respectively. 
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Figure S8.2:  Truncating mutations of TP53 lead to markedly lower transcript levels, 
independent of copy-number status. 

RB pathway 
 
Amplification of CCNE1 is one of the most common focal copy number change events in serous 
ovarian cancer, occurring at a frequency of 20%. RB1, immediately downstream of CCNE1, is 
deleted in 25 samples and mutated in an additional nine samples (10.8% of cases combined). As 
is the case with PTEN and NF1 (see below), some of the RB1 deletions are intragenic, i.e., do not 
affect the entire gene, and cases with intragenic deletions have low mRNA expression at the exon 
level but not the whole gene level (data not shown). 
 
CDKN2A, a negative regulator of cyclins and cyclin-dependent kinases, is frequently altered in 
various types of cancer, typically by deletion or epigenetic regulation. In this data set, we observe 
a striking bimodal expression pattern, with approximately one third of the cases with very low or 
no expression (Figure S8.3). There is no evidence for CDKN2A promoter methylation in the 
samples with low expression. Low CDKN2A mRNA expression is mutually exclusive with 
CCNE1 amplification and RB1 deletion/mutation events (P = 4.726e-11, two-sided Fisher’s Exact 
Test, Figure S8.4). 
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Figure S8.3:  Bimodal expression pattern of CDKN2A. 

 
 

 
Figure S8.4:  Alteration pattern in the RB signaling pathway. Each column represents an 
individual case; each row represents a gene.  Only cases with RB signaling alterations (N=212) 
are shown. The percent altered is relative to N=316. 

RAS/PI-3-Kinase-signaling 
 
Various key members of the RAS/PI3K pathway are frequently altered by several different 
mechanisms in ovarian cancer1. The most commonly altered genes in the pathway are PTEN 
(homozygous deletion or mutation), PIK3CA (amplification or mutation), KRAS (amplification or 
mutation), NF1 (homozygous deletion or mutation), as well as AKT1 and AKT2 (amplification) 
(Figure S8.5). Known activating mutations are observed in PIK3CA (two cases, E545A and 
H1047R), KRAS (two cases, both G12V), and BRAF (one case, N581S). 
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Figure S8.5:  Alteration pattern in the RAS/PI3K signaling pathway. Each column represents 
an individual case; each row represents a gene.  Only cases with RAS/PI-3-K signaling alterations 
(N=142) are shown. The percent altered is relative to N=316. 

A fraction of the homozygous deletions of PTEN and NF1 are intragenic, i.e. they only affect part 
of the gene. In these cases, we usually observe lower expression of the deleted exons than of the 
rest of the gene (Figure S8.6, A-C). 
 
We also observed uncommon but focal amplification of ERBB2 (4 cases, 1.3%) and ERBB3 (12 
cases, 3.8%) (Figure S8.6, D-E). While ERBB2 expression is markedly increased with 
amplification, expression increase of ERBB3 is only modest. 
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Figure S8.6:  NF1 Deletion and ERBB2/ERBB3 Amplification. A) Correlation between NF1 
copy-number state and mRNA expression.  Some samples with homozygous deletion of NF1 do 
not have low mRNA expression, usually because they are only partially deleted, with possible full 
loss of function. B) Intragenic deletions of NF1 are frequent, sometimes only affecting one exon. 
C) Sample TCGA-13-1405 has a deletion of exons 2-13 of NF1, and these exons show the lowest 
expression values across the gene. D) The few samples with focal, high-level amplification of 
ERBB2 result in markedly increased mRNA expression.  E) ERBB3 expression is only modestly 
increased by gene amplification. 
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8.3 Homologous Recombination (HR) 
Introduction 
 
Approximately 10-15% of ovarian cancers appear to be hereditary, and the majority of these 
cases are due to germline mutations in BRCA1 or BRCA21. A subset of sporadic ovarian tumors 
appear to share distinctive DNA-repair defects with BRCA1/BRCA2 germline mutation carriers, a 
phenomenon broadly described as “BRCAness”2,3,4.  DNA-repair defects can be caused by 
germline or somatic alterations to the homologous recombination (HR) DNA repair pathway, 
including somatic mutation of BRCA1/BRCA1 and epigenetic silencing of BRCA1, alterations to 
the core set of Fanconi Anemia genes, and additional genetic alterations to other key members of 
the HR pathway. For example, somatic mutations in BRCA1 and BRCA2 have previously been 
observed in sporadic ovarian cancer, but these events were considered relatively rare in ovarian 
cancer -- early studies have reported somatic mutation rates of 7-9% in BRCA1 and 4% in 
BRCA25,6,7.  Additionally, BRCA1 silencing via promoter hypermethylation has been reported in 
ovarian cancer8,9, and recent studies have observed BRCA1 hypermethylation in 18% of ovarian 
patients10.  Other recent studies have identified EMSY amplification11,12 and FANCF 
hypermethylation13 as two additional means of inactivating the BRCA pathway in a broader 
spectrum of sporadic ovarian cancers.  
 
Identifying ovarian cancer cases with defects in BRCA or the homologous recombination (HR) 
pathway is of increased clinical relevance due to the advent of new PARP inhibitors,14,15 with 
potentially synthetic lethal effect when applied to cells with pre-existing defects in HR DNA 
repair. In vitro experiments have demonstrated that PARP inhibitors uniquely affect the survival 
of tumors cells with defects in HR, while leaving normal cells intact, and that BRCA1 and BRCA2 
deficient cells are up to 1000 times more sensitive to the current set of PARP inhibitors16,17. 
Multiple PARP inhibitor drugs are currently in clinical trials in breast and ovarian cancer14, and 
early Phase 1 and 2 trials in BRCA1/BRCA2 mutation carriers appear promising18,19. High-
throughput screening has also identified PARP sensitivity in cells deficient in other HR pathway 
members, including RAD51, RAD54, DSS1, RPA1, NBS1, ATR, ATM, CHK1, CHK2, FANCD2, 
FANCA, and FANCC20. PTEN deficiency has also been recently identified to cause homologous 
recombination defects in human tumor cells, and to sensitize tumor cells to PARP inhibitors21.  
Many investigators have therefore hypothesized that PARP inhibitors may be effective against a 
much larger group of tumors, beyond just BRCA1/BRCA2 mutation carriers3,14,15. 
 
A key challenge is to determine the extent of BRCA defects in sporadic ovarian cancers, develop 
biomarkers for these defects and for the response to, e.g., PARP inhibitor therapy, and apply this 
knowledge to identify patients likely to benefit from PARP inhibition therapy.  
 

Analysis of alterations in HR DNA repair processes 
 
For the analysis of the homologous recombination (HR) and BRCA pathways, four levels of 
analysis were performed: 
 

• First, a detailed analysis of BRCA1/2 mutations and epigenetic silencing of BRCA1. 
 

• Second, a detailed analysis of well-annotated genes known to be involved in the 
canonical HR pathway.  This includes, for example, the set of Fanconi Anemia genes, 
C11orf30 (EMSY), RAD51, the DNA damage sensing genes ATM and ATR and PTEN. 
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• Third, a global, but less detailed assessment of approximately 40 other HR-related genes.  

Additional genes were derived from an extended literature and pathway search, and Gene 
Ontology annotation.  

 
• Fourth, to investigate potential cross-talk with other genes and pathways, we compared 

the complete set of BRCA inactivation events to all recurrently altered copy number 
peaks, as defined by GISTIC, looking for trends in mutual exclusivity and co-occurrence. 

BRCA Alterations 

BRCA Mutations 
 
BRCA1 is mutated in 37 of 316 cases (11.7%):  Twenty-seven (8.5%) cases have germline 
mutations and 10 (3.2%) have somatic mutations (Table S8.1, Figure S8.7A).  Thirteen of the 
observed BRCA1 germline mutations correspond to the well-known 'founder' mutations 
185/187delAG and 5382/5385insC, both of which have been extensively studied in Ashkenazi 
Jewish populations22,23,24,25. BRCA2 is mutated in 29 of 316 cases (9.2%):  Twenty (6.3%) cases 
have germline mutation and 9 cases  (2.9%) have somatic mutations (Table S8.1, Figure S8.7B).  
Five of the observed BRCA2 germline mutations correspond to the well-known 6174delT founder 
mutation24,26.  Thirty of the 37 (81%) BRCA1 mutations are accompanied by heterozygous loss of 
BRCA1, indicating that both alleles are inactivated, as predicted by Knudson's two-hit hypothesis 
for a tumor suppressor gene (Figure S8.8A). Twenty-one of the 29 (72.4%) BRCA2 mutations are 
accompanied by heterozygous loss (Figure S8.8B).  Eighty-eight percent of germline BRCA1 
mutations matched to existing records in the Breast Cancer Information Core (BIC) Database 
(http://research.nhgri.nih.gov/projects/bic/), compared to 40% for somatic mutations; similarly, 
58% of germline BRCA2 mutations matched to existing BIC records, compared to 30% for 
somatic mutations.   
 
In total, BRCA1 or BRCA2 are mutated in 64/316 cases (20.3%, Table S8.3).  This corresponds to 
a germline mutation rate of 14.6% and a somatic mutation rate of 6.0%. The observed mutation 
rates are within range of previous reports.  For example, a 2010 study involving 235 women with 
ovarian cancer found germline and somatic mutation rates of approximately 11.5% and 7% 
respectively4, and a 2005 U.S. based survey involving a total of 232 women found BRCA1/2 
germline mutations in 13.8% of all cases, and 14.8% of serous cases27. 
 
With the exception of two cases, BRCA1 and BRCA2 mutations are mutually exclusive, but the 
mutual exclusivity is not statistically significant (N=316 P = 0.5518, two-sided Fisher's exact 
test). 
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Table S8.1:  BRCA1 Mutations 

BRCA1 Germline Mutations, (sorted by nucleotide position) 
 

Case ID  Mutation Type  Mutation Chromosome 
Location 

NT 
Position† Note # of Records in 

BIC Database†† Copy Number Status 

TCGA-10-0931  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24.  

1980 Heterozygous Loss 

TCGA-13-1408  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24. 1980 Heterozygous Loss 

TCGA-23-1027  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24. 1980 Diploid 

TCGA-23-1118  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24. 1980 Heterozygous Loss 

TCGA-23-2078  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24. 1980 Heterozygous Loss 

TCGA-23-2079  Frame Shift 
Deletion  p.E23fs  17:38529571-

38529572 187  185/187DelAG Founder 
Mutation 23 24. 1980 Diploid 

TCGA-13-0887  Frame Shift 
Deletion  p.C24fs  17:38529570-

38529571 188  185/187DelAG Founder 
Mutation 23 24. 1980 Heterozygous Loss 

TCGA-13-1494  Split Site SNP  e3-1  17:38512077-
38512077 N/A  N/A Heterozygous Loss 

 

TCGA-13-0893  Frame Shift 
Insertion  p.R504fs  17:38499565-

38499566 1627 1627Ins ATAAATTAAA 0 Heterozygous Loss 

TCGA-13-0903  Frame Shift 
Deletion  p.R504fs  17:38499564-

38499564 1629 DelC 2 Heterozygous Loss 

TCGA-61-2109  Frame Shift 
Deletion p.K654fs  17:38499113-

38499113 2080 DelA 31 Heterozygous Loss 

TCGA-04-1356  Frame Shift 
Deletion  p.N723fs  17:38498908-

38498908 2285 DelC 0 Heterozygous Loss 

TCGA-59-2348  Nonsense 
Mutation  p.E797*  17:38498685-

38498685 2508 2508 G to T (Glu to Stop)  3 Heterozygous Loss 

TCGA-13-1512  Frame Shift 
Deletion  p.D825fs  17:38498599-

38498599 2594 DelC  55 Heterozygous Loss 

TCGA-09-1669  Frame Shift 
Deletion  p.E1346fs  17:38497039-

38497039 4154 DelA 50 Heterozygous Loss 

TCGA-25-2392  Frame Shift 
Deletion  p.E1346fs  17:38497039-

38497039 4154 DelA 50 Diploid 

TCGA-24-2298  Frame Shift 
Insertion  p.Q1395fs  17:38496488-

38496489 4302 4302InsTC.  1 Diploid 

TCGA-24-1470  Frame Shift 
Deletion  p.T1677fs  17:38473195-

38473198 5146 DelTAAC 1 Heterozygous Loss 

TCGA-57-1582  Frame Shift 
Deletion  p.R1726fs  17:38468889-

38468892 5296 DelGAAA 39 Gain 

TCGA-09-2051  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25.   

1063 Heterozygous Loss 

TCGA-13-0883  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25. 

1063 Heterozygous Loss 

TCGA-23-1122  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25. 

1063 Amplification 

TCGA-23-2077  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25. 

1063 Heterozygous Loss 

TCGA-23-2081  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25. 

1063 Heterozygous Loss 

TCGA-25-2401  Frame Shift 
Insertion  p.Q1756fs  17:38462605-

38462606 5385  5382/5385 insC Founder 
Mutation 24 25. 

1063 Heterozygous Loss 

TCGA-09-2045  Frame Shift 
Deletion  p.Q1779fs  17:38454735-

38454735 5454 DelC 5 Heterozygous Loss 

TCGA-61-2008  Nonsense 
Mutation  p.W1815*  17:38453208-

38453208 5564 5564 G to A 0 Heterozygous Loss 
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BRCA1 Somatic Mutations, (sorted by nucleotide position) 
 

Case ID  Mutation Type  Mutation Chromosome 
Location 

NT 
Position† Note†† 

# of Records in 
BIC Database†† 

Copy Number Status 

TCGA-13-0804  Missense 
Mutation  p.C47W  17:38512070-

38512070 260 260 C to G 0 Heterozygous Loss 

TCGA-25-1625  Nonsense 
Mutation  p.E116*  17:38509760-

38509760 465 465 G to T 0 Heterozygous Loss 

TCGA-29-2427  Nonsense 
Mutation  p.L431*  17:38499782-

38499782 1411 1411 T to G (Leu to Stop).  1 Heterozygous Loss 

TCGA-25-1630  Frame Shift 
Deletion  p.A521fs  17:38499517-

38499517 1676 1676DelG 0 Heterozygous Loss 

TCGA-23-1026  Frame Shift 
Deletion  p.G813fs  17:38498636-

38498636 2557 2557DelG 0 Heterozygous Loss 

TCGA-25-1632  Frame Shift 
Insertion  p.S1216fs  17:38497425-

38497426 3767 
3767Ins AGAACTTA.  
Three 3767 InsA records 
recorded in BIC Database. 

3 
Heterozygous Loss 

TCGA-13-1489  Frame Shift 
Insertion  p.N1265fs  17:38497279-

38497280 3913 3913InsAA.  0 Heterozygous Loss 

TCGA-04-1357  Nonsense 
Mutation  p.Q1538*  17:38479937-

38479937 4731 4731 C to T 3 Diploid 

TCGA-24-2035  Frame Shift 
Deletion  p.G1710fs  17:38469440-

38469440 5248 5248DelG 0 Heterozygous Loss 

TCGA-13-0730  Nonsense 
Mutation  p.R1835*  17:38451310-

38451310 5622 5622 C to T (Arg to Stop) 63 Heterozygous Loss 

 
 

† Nucleotide positions are reported in reference to BRCA1 GenBank record U14680, as per The Breast 
Cancer Information Core Database (http://research.nhgri.nih.gov/projects/bic/). 
 
†† Mutations were matched by nucleotide position and compared to existing mutation records in the Breast 
Cancer Information Core (BIC) Database (http://research.nhgri.nih.gov/projects/bic/) on August 30, 2010. 
 
 
Table S8.2:  BRCA2 Mutations 

 
BRCA2 Germline Mutations, (sorted by nucleotide position) 
 

Case ID  Mutation Type  Mutation Chromosome 
Location NT Position† Note†† 

# of Records in 
BIC Database†† Copy Number Status 

TCGA-24-0975  Splice Site SNP  e6+2  13:31798752-
31798752 N/A  N/A Heterozygous Loss 

TCGA-24-2288  Frame Shift Deletion  p.V220fs  13:31801605-
31801606 885 del TG 0 Heterozygous Loss 

TCGA-13-0900  Frame Shift Deletion  p.N257fs  13:31803141-
31803145 995 delCAAAT 1 Heterozygous Loss 

TCGA-04-1367  Nonsense Mutation  p.E294*  13:31804495-
31804495 1108 1108 G to T 0 Heterozygous Loss 

TCGA-25-2404  Frame Shift Deletion  p.K343fs  13:31804640-
31804640 1253 1253 DelA 0 Heterozygous Loss 

TCGA-24-1463  Frame Shift 
Insertion  p.I605fs  13:31805420-

31805421 2033 2033 InsA 0 Diploid 

TCGA-24-1417  Frame Shift Deletion  p.N1706fs  13:31811604-
31811607 5340 delAATA 0 Heterozygous Loss 

TCGA-24-2024  Frame Shift Deletion  p.Y1710fs  13:31811620-
31811623 5356 delTATG 0 Heterozygous Loss 

TCGA-04-1336  Frame Shift Deletion  p.T1738fs  13:31811703-
31811706 5439 delTACT 0 Heterozygous Loss 

TCGA-13-0913  Frame Shift Deletion  p.E1857fs  13:31812061-
31812065 5797 delGAAAC 0 Heterozygous Loss 

TCGA-13-0886  Frame Shift Deletion  p.S1982fs  13:31812438-
31812438 6174 6174delT Founder 

Mutation 24,26.  
1087 Heterozygous Loss 
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TCGA-13-1498  Frame Shift Deletion  p.S1982fs  13:31812438-
31812438 6174 6174delT Founder 

Mutation 24,26. 

1087 
Diploid 

TCGA-13-1499  Frame Shift Deletion  p.S1982fs  13:31812438-
31812438 6174 6174delT Founder 

Mutation 24,26. 
1087 Heterozygous Loss 

TCGA-24-2280  Frame Shift Deletion  p.S1982fs  13:31812438-
31812438 6174 6174delT Founder 

Mutation 24,26. 
1087 Heterozygous Loss 

TCGA-59-2351  Frame Shift Deletion p.S1982fs  13:31812438-
31812438 6174 6174delT Founder 

Mutation 24,26. 
1087 Heterozygous Loss 

TCGA-13-0726  Nonsense Mutation  p.R2394*  13:31827170-
31827170 7408 7408 A to T 5 Heterozygous Loss 

TCGA-24-2293  Nonsense Mutation  p.R2520*  13:31828687-
31828687 7786 7786 C to C 44 Diploid 

TCGA-24-1562  Nonsense Mutation  p.K3326*  13:31870626-
31870626 10204 10204 A to T 293 Diploid 

TCGA-13-1512  Nonsense Mutation  p.K3326*  13:31870626-
31870626 10204 10204 A to T. 293 Diploid 

TCGA-23-1026  Nonsense Mutation  p.K3326*  13:31870626-
31870626 10204 10204 A to T 293 Diploid 

 
BRCA2 Somatic Mutations, (sorted by nucleotide position) 
 

Case ID  Mutation Type  Mutation Chromosome 
Location Nucleotide Position† Note # of Records in 

BIC Database†† Copy Number Status 

TCGA-04-1331  Nonsense Mutation  p.C711*  
13:31808625-
31808625 NT Position: 2361 

2361 C to A 0 
Heterozygous Loss 

TCGA-13-0890  
Frame Shift  
Deletion  p.S1230fs  

13:31810178-
31810178 NT Position: 3914 

3914DelT  0 
Heterozygous Loss 

TCGA-23-1030  Missense Mutation  p.T1354M  
13:31810553-
31810553 NT Position: 4289 

4289 C to T 11 
Diploid 

TCGA-13-0885 Frame Shift Deletion  p.K1406fs  
13:31810708-
31810711 NT Position: 4444 

delAAAG 0 
Heterozygous Loss 

(2 mutations) Frame Shift Deletion  p.E1407fs  
13:31810710-
31810713 NT Position: 4446 

delAGAA 1 
Heterozygous Loss 

TCGA-24-1103  Missense Mutation  p.K1638E  
13:31811404-
31811404 NT Position: 5140 

5140 A to G 0 
Heterozygous Loss 

TCGA-09-2050  Nonsense Mutation  p.S1882*  
13:31812137-
31812137 NT Position: 5873 

5873 C to 
A.  

28 
Heterozygous Loss 

TCGA-24-1555  
Frame Shift  
Deletion  p.P2608fs  

13:31834675-
31834675 NT Position: 8049 

8049DelT.  0 
Heterozygous Loss 

TCGA-13-1481  
Frame Shift  
Deletion  p.S2697fs  

13:31835426-
31835441 NT Position: 8316 

8315DelTG
AGCGCAA
ATATATC.  

0 

Diploid 

TCGA-23-1120  
Frame Shift  
Deletion  p.P3278fs  

13:31870481-
31870481 NT Position: 10059 

10059DelG. 0 
Heterozygous Loss 

 
† Nucleotide positions are reported in reference to BRCA2 GenBank record U43746, as per The Breast 
Cancer Information Core Database (http://research.nhgri.nih.gov/projects/bic/). 
 
†† Mutations were matched by nucleotide position and compared to existing mutation records in the Breast 
Cancer Information Core (BIC) Database (http://research.nhgri.nih.gov/projects/bic/) on August 30, 2010. 
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Table S8.3:  BRCA Mutation Rates 

Gene Germline Mutation 
Rate 

Somatic Mutation Rate Total Mutation Rate 

BRCA1 8.54% 3.16% 11.71% 
BRCA2 6.33% 2.85% 9.18% 
Both Genes 14.56% 6.01% 20.25% 

 
 

 
Figure S8.7:  Summary of BRCA Mutations.  All BRCA1/2 germline and somatic mutations 
are displayed along the protein domain structure.  A) BRCA1 Mutations.  Thirteen cases, all 
germline, have well-known BRCA1 founder mutations at 185/187delAG and 5382/5385insC. B) 
BRCA2 mutations. Five cases, all germline, have known BRCA2 founder mutations at 6174delT.  
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Figure S8.8:  Heterozygous loss associated with BRCA1/2. A) Thirty of the 37 (81%) of 
BRCA1 mutations are accompanied by heterozygous loss; B) Twenty-one of the 29 (72.4%) of 
the BRCA2 mutations are accompanied by heterozygous loss. 

 

Epigenetic Silencing of BRCA1 
 
BRCA1 silencing via promoter hypermethylation has been reported previously in ovarian and 
breast cancer8,9, and recent studies have reported BRCA1 hypermethylation in 18% of ovarian 
patients10.  
 
As described in Supplemental Methods 7, we analyzed the relationship between DNA 
methylation and gene expression for nine different probes located in or near the BRCA1 promoter 
region, and found statistically significant inverse correlations for four of the nine probes 
(cg19531713, cg19088651, cg08993267, cg04658354). The target CpG sites of those probes are 
located in the CpG island that contains the transcription start site of BRCA1.  For each of the 
aforementioned four probes, we used k-means clustering on the two-dimensional space of DNA 
methylation and expression data to separate the epigenetically silenced group and the non-
epigenetically silenced group of samples. Expression data were scaled to have the same range as 
DNA methylation data for the purpose of clustering. We then combined the calls from the four 
probes. Since data was lacking for some probes in some samples, we relied on the fraction of the 
four probes calling a particular sample in the hypermethylated group, rather than on a fixed 
number of probes. Samples with >50% consensus on belonging to the hypermethylated group 
across the four probes were classified as samples with silencing of BRCA1 by promoter 
hypermethylation.  
 
Using this method, we identified 34 of 316 cases (10.8%) with epigenetic silencing of BRCA1.  
Notably, epigenetic silencing of BRCA1 is mutually exclusive of BRCA1/2 mutations (P = 4.45 e-
04, two-sided Fisher's exact test). This mutual exclusivity provides evidence of strong selective 
pressure to inactivate BRCA via either mutation or epigenetic silencing. 
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Analysis of the Core HR Pathway 

Amplification of EMSY 
 
Previous studies have identified amplification and overexpression of EMSY (C11orf30) as an 
alternative means by which tumors selectively inactivate the BRCA pathway. EMSY was 
discovered in a yeast two-hybrid screen with BRCA2, and the EMSY protein binds specifically to 
the transactivation domain in BRCA212. An excess of EMSY can result in an inhibition of 
BRCA2 transcriptional activity, and overexpression of EMSY may eliminate selective pressure in 
sporadic breast and ovarian cancer to inactivate BRCA228. The EMSY protein is also known to be 
co-located with BRCA2 at chromosomal sites of DNA damage and to interact with proteins 
involved in the regulation of chromatin29.   
 
Previous studies have identified amplification of EMSY in 13% of sporadic primary breast cancer 
and 17% of high-grade sporadic ovarian cancer2,11. Ovarian tumors with EMSY amplification 
have been associated with significantly worse outcome30. However, in a multivariate analysis that 
included histological subtype, grade, stage, age and EMSY amplification as the covariates, only 
stage and age were significant prognostic predictors30. EMSY is located at 11q13, a region known 
to be amplified in multiple cancers, including breast, ovarian, head and neck, lung, and bladder 
cancer12. The amplicon is gene dense, and the region likely contains a cassette of genes rather 
than a single oncogene -- for example, in ovarian cancer, the amplicon tends to include several 
genes including EMSY, LRRC32 (GARP), and PAK112.   
 
For the unified case list (N=316), we identified 19 cases with EMSY amplification (GISTIC) and 
6 cases with EMSY mutation (Figure S8.9). By this analysis, there is evidence for EMSY 
alteration in 7.9% of cases.  However, we do not observe co-occurrence or mutual exclusivity 
between BRCA inactivation events (mutations plus methylation) and EMSY amplification and 
mutation (P = 0.8248, two-sided Fisher’s Exact Test). 
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Figure S8.9:  EMSY/C11orf30 Copy Number Alterations.  Normalized log2 mRNA 
expression v. GISTIC copy number status for EMSY.  

Absence of FANCF Hypermethylation 
 
A number of recent studies have identified hypermethylation of FANCF as an alternative means 
of altering the BRCA pathway in sporadic cancers, including ovarian cancer [2].    For example, a 
2008 study observed hypermethylation of FANCF in 13.2% of 53 ovarian tumors samples13.  
However, in the TCGA data, we observe no clear evidence of FANCF silencing by 
hypermethylation (Figure S8.10). 
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Figure S8.10: DNA methylation beta values v. normalized log2 mRNA expression levels for 
FANCF.  We observe no clear evidence of hypermethylation of FANCF.  

Homozygous Deletions of PTEN 

PTEN deficiency has been identified to cause homologous recombination defects in human tumor 
cells, and to sensitize tumor cells to PARP inhibitors21. However, the exact role of PTEN in 
homologous recombination and DNA repair remains controversial and an area of active 
research31.  DNA copy-number analysis identifies a focal deletion region at 10q23.31 (q-value: 
5.41E-11), which includes only PTEN.  This corresponds to 21 cases (6.7%) of PTEN 
homozygous deletion, each of which is associated with down-regulation at the mRNA level 
(Figure S8.11).  We also observe two somatic mutations in PTEN. However, we do not observe 
co-occurrence or mutual exclusivity between BRCA inactivation events (mutations plus 
methylation) and PTEN homozygous deletion and mutation (P = 0.3607, two-sided Fisher’s 
Exact Test). 
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Figure S8.11:  PTEN Copy Number Alterations.  PTEN is homozygously deleted in 21 cases 
(6.65%), and homozygous deletions are associated with down-regulation at the mRNA level.  
N=316 cases. 

Fanconi Anemia and Other Core HR Genes 
 
Table S8.4 provides mutation and copy number alteration rates for other well-annotated genes 
known to be involved in homologous recombination (HR), derived from literature 
curation32,33,34,35.  A fingerprint of the complete set of HR genes is provided in Figure S8.12. Due 
to the low mutation rates observed in the Fanconi Anemia genes, we do not observe co-
occurrence or mutual exclusivity between BRCA inactivation events (mutations plus methylation) 
and Fanconi Anemia mutations (P = 0.7834, two-sided Fisher’s Exact Test). 
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Table S8.4:  Analysis of other Core Members of the HR Pathway 

 
Fanconi Anemia Genes, Total Mutation Rate: 5.06% 
 
Gene 
Symbol 

Entrez 
Gene ID 

In Vitro 
Sensitivity to 
PARPi* 

Number of 
Samples Mutated 
(N=316) 

% of Samples 
Mutated (N=316) 

Copy Number 
Alterations† 

C19orf40 91442    0 0.00% 7.91% 
FANCA 2175   Yes 3 0.95% 2.85% 
FANCB 2187    0 0.00% 0.00% 
FANCC 2176    Yes 2 0.63% 1.58% 
FANCD2 2177   Yes 1 0.32% 0.95% 
FANCE 2178    1 0.32% 2.53% 
FANCF 2188    0 0.00% 0.63% 
FANCG 2189   1 0.32% 0.00% 
FANCI 55215   2 0.63% 1.58% 
FANCL 55120   2 0.63% 1.58% 
FANCM 57697   1 0.32% 0.95% 
PALB2 79728  4 1.27% 0.63% 
 
Core HR RAD Genes, Total Mutation Rate:  1.58% 
 
Gene 
Symbol 

Entrez 
Gene ID 

In Vitro 
Sensitivity to 
PARPi* 

Number of 
Samples Mutated 
(N=316) 

% of Samples 
Mutated (N=316) 

Copy Number 
Alterations† 

RAD50 10111   2 0.63% 1.27% 
RAD51 5888 Yes 1 0.32% 1.27% 
RAD51C 5889      

0 0.00% 0.63% 
RAD51L1 5890     0 0.00% 2.22% 
RAD51L3 5892    0 0.00% 0.95% 
RAD52 5893    0 0.00% 7.28% 
RAD54B 25788     0 0.00% 4.11% 
RAD54L 8438  2 0.63% 5.38% 
 
DNA damage response genes involved in HR, Total Mutation Rate: 2.22% 
 
Gene 
Symbol 

Entrez 
Gene ID 

In Vitro 
Sensitivity to 
PARPi* 

Number of 
Samples Mutated 
(N=316) 

% of Samples 
Mutated (N=316) 

Copy Number 
Alterations† 

ATM 472  Yes 4 1.27% 1.27% 
ATR 545   Yes 2 0.63% 3.80% 
CHEK1 1111  Yes 0 0.00% 3.48% 
CHEK2 11200 Yes 1 0.32% 1.90% 

 
*In Vitro Sensitivity to PARPi based on: 20. 
 
† Copy number rates include amplifications and homozygous deletions as determined by GISTIC copy-
number analysis. 
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Figure S8.12:  Genomic Fingerprint of HR Pathway Alterations.  Each column represents an 
individual case; each row represents a gene.  Only cases with HR defects (N=154) are shown.  
Copy number alterations are only shown for EMSY and PTEN. While it is not yet clear if all of 
these HR defects result in a sufficient decrease in homologous recombination to result in 
sensitization to PARP inhibitors, our findings indicate that HR defects occur in a substantial 
fraction of sporadic ovarian tumors.  We therefore suggest comprehensive profiling of these 
molecular alterations in ongoing and future clinical trials of PARP inhibitors. 

 

Extended HR Analysis 
 
To extend the analysis beyond well-annotated genes involved in HR, a more global, but less 
detailed analysis was performed on 42 other potentially relevant genes.  These additional genes 
were derived from an extended literature and pathway search, and Gene Ontology annotation. 
More specifically, the list was derived from the ATM/BRCA pathway from BioCarta, the 
Homologous Recombination Repair pathway from Reactome36,37, and Gene Ontology 
GO:0000724: double-strand break repair via homologous recombination.  The complete list of 
genes analyzed, along with mutation rates and GISTIC copy number analysis is provided in Table 
S8.5.  Within the larger gene set, we observe only very low mutations rates.  For example, the 
Bloom syndrome gene (BLM) participates in genome maintenance, is essential for BRCA1 
function38 and is mutated in four cases.  Additionally, several genes including BCL2L1, OBFC2B 
and RBBP8 appear within relatively narrow recurrent regions of amplification, as defined by 
GISTIC copy number analysis. 
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Table S8.5:  Analysis of Other Potential HR Genes 

Gene Symbol Entrez Gene ID # of Samples Mutated 
(N=316) 

% of Samples 
Mutated (N=316) 

Within GISTIC Peak 
(Amp/Del; Total Number of 
Genes within Peak appear in 
brackets) 

BBC3 27113 0 0.00% Deletion (323) 

BCL2 596 0 0.00%  

BCL2L1 598 0 0.00% Amplification (2) 

BLM 641 4 1.27% Amplification (62) 

BTBD12 84464 2 0.63%  

DMC1 11144 0 0.00%  

EME1 146956 0 0.00%  

EME2 197342 0 0.00%  

ERCC4 2072 1 0.32%  

GEN1 348654 2 0.63%  

GIYD1 548593 0 0.00%  

H2AFX 3014 0 0.00% Deletion (269) 

HUS1 3364 1 0.32%  

LIG1 3978 0 0.00% Deletion (323) 

MDC1 9656 2 0.63%  

MDM2 4193 0 0.00%  

MRE11A 4361 0 0.00%  

MUS81 80198 1 0.32%  

NBN 4683 0 0.00%  

OBFC2A 64859 0 0.00%  

OBFC2B 79035 1 0.32% Amplification (18) 

PCNA 5111 0 0.00%  

PMAIP1 5366 0 0.00%  

POLD1 5424 1 0.32%  

POLD2 5425 2 0.63%  

POLD3 10714 1 0.32%  

POLD4 57804 0 0.00%  

RAD1 5810 1 0.32% Amplification (80) 

RAD17 5884 0 0.00% Deletion (51) 

RAD9A 5883 0 0.00%  

RBBP8 5932 1 0.32% Amplification (11) 

RPA1 6117 2 0.63%  

RPA2 6118 1 0.32% Deletion (188) 

RPA3 6119 0 0.00% Deletion (84) 

RTEL1 51750 0 0.00% Amplification (39) 

SHFM1 7979 0 0.00%  

TEX15 56154 4 1.27%  

TP53BP1 7158 4 1.27%  

TREX1 11277 0 0.00%  

UBE2N 7334 0 0.00% Deletion (375) 

XRCC2 7516 0 0.00% Amplification (92) 

XRCC3 7517 1 0.32%  
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Survival Analysis of Cases with HR Defects 
 
Previous studies have observed better outcome in BRCA-positive patients, including longer 
tumor-free intervals between relapses, and improved overall survival39. Previous studies have also 
observed shorter overall survival for patients with BRCA1 hypermethylation9.   
 
In the TCGA ovarian data, we observe mutual exclusivity between BRCA1 epigenetic silencing 
and BRCA1/2 mutations (see above), and we therefore focused our survival analysis on 
comparing three patients groups:  BRCA1 epigenetically silenced, BRCA1/2 mutated, and BRCA 
Wildtype (WT).  Within the complete data set (N=316), we observe differences in age between 
the three groups (P = 0.01576, Kruskal Wallis Test).  Post-hoc pairwise comparisons show 
differences between BRCA mutated and BRCA WT (57.74 years versus 61.84 years, Bonferroni 
adjusted P = 0.061, Wilcoxon signed-rank test).  Univariate survival analysis of BRCA status 
shows divergent outcome for the two types of events, with BRCA mutated cases exhibiting better 
overall survival (OS) than BRCA wild-type (median OS 66.5 versus 41.9 months, P = 3.08 e-04, 
log-rank test, Figure S8.13), and BRCA1 epigenetically silenced cases exhibiting similar survival 
to BRCA1/2 WT (median OS 41.5 versus 41.9 months, P = 0.69, log-rank test, Figure S8.13). In 
a multivariate survival analysis of BRCA mutated versus BRCA WT cases, mutation status and 
age were significant prognostic predictors (BRCA mutation status, P = 0.00375, Age, P = 
0.02742).   We therefore observe evidence of selective pressure to alter BRCA genes via distinct 
genetic mechanisms, but statistically significant differences in outcomes for patients.  Sequencing 
additional samples will allow further exploration in the distinct outcome patterns seen in BRCA1 
versus BRCA2 and germline versus somatic events.       
 

 
Figure S8.13:  BRCA survival analysis. A) BRCA age comparison for the three BRCA 
categories analyzed.  B) Kaplan-Meier curve comparing the survival of patients with BRCA 
mutation versus BRCA wild-type (WT).  C) Kaplan-Meier curve comparing the survival of 
patients with BRCA1 epigenetic silencing versus BRCA wild-type (WT).      

 
 

Effect of BRCA inactivation on genome stability 
 
We investigated the effect of BRCA1/BRCA2 mutations and BRCA1 silencing on the overall level 
of DNA copy-number alterations. We computed the fraction of the genome that is not diploid for 
each case, and found that BRCA-altered cases to not exhibit increased levels of copy-number 
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alterations (Figure S8.14). The result is similar when using the number of breakpoints in the DNA 
copy-number profiles (data not shown). 
 

 
Figure S8.14:  Cases with BRCA-alterations do not exhibit increased genomic instability. 

 
 
 

Correlation of BRCA inactivation with recurrently altered copy number 
peaks in other genomic regions 
 
To investigate potential cross-talk with other genes and pathways, we looked for potential 
correlations of BRCA inactivation events (mutation plus methylation, 98 samples, see above) 
with significantly altered copy number events as reported by GISTIC analysis (63 peaks of 
amplification and 50 peaks of deletion).  
 
For each GISTIC peak, we defined the set of samples that is affected by the DNA copy-number 
alteration. We only considered samples as altered if at least half of the genes in the region are 
affected by homozygous deletion or high-level amplification. Each peak-associated set of samples 
was then tested for enrichment and depletion in BRCA inactivation by a two-tailed Fisher’s exact 
test. Significant correlations were selected after Benjamini-Hochberg correction for false 
discovery (FDR < 5%) (Table S8.6). 
 
We found a significant enrichment of BRCA inactivation for MYC amplified cases (49.0% of 
BRCA altered cases have MYC amplification versus 24.3% of BRCA wild type cases, FDR-
adjusted P = 0.002, Table S8.6). CCNE1 amplified cases show significant depletion of BRCA 
alteration (8.2% of BRCA altered cases have CCNE1 amplification versus 25.7% of BRCA wild 
type cases, FDR adjusted P = 0.009). Unlike CCNE1, cases with alterations in RB1 and CDKN2A 
(the other two main genes in the RB pathway, see 8.2. Cancer Pathways above), had overlap with 
BRCA alterations (P = 0.18 and P = 0.6, respectively, two-sided Fisher’s Exact Test). 
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The observed tendency towards mutual exclusivity between BRCA inactivation and CCNE1 
amplification prompted us to reevaluate the previously reported poor survival associated with 
CCNE1-amplification40,41. In evaluating the full case set, we observe worse outcome for CCNE1 
amplified cases, in line with previous studies (P = 0.0718, Log Rank Test, Figure S8.15A).  
However, if we remove all BRCA inactivated cases, and examine survival differences in CCNE1 
amplified cases within BRCA WT cases only, significant worse outcome is no longer detectable 
(P = 0.24, log-rank test, Figure S8.15B), suggesting that the previously reported survival 
difference can be explained by the better survival of BRCA-mutated cases. 
 
 
 

 
Figure S8.15:  Overall Survival for CCNE1 amplified cases. Survival of CCNE1 amplified 
cases is compared to CCNE1 wild type cases: Among all cases (A), and among BRCA wild type 
cases only (B). 
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Table S8.6:  Correlation between BRCA alterations and DNA copy-number events: Each 
peak is identified by its corresponding cytoband, and the regions are marked as either amplified 
(AMP) or deleted (DEL). The number of co-occurring cases with BRCA altered and BRCA wild 
type cases are in columns “BRCA Altered” and “BRCA WT” respectively. Fisher’s p-values are 
reported (only regions with p<0.05 are in the table) with the corresponding FDR-corrected values. 
The red box highlights regions with significant enrichment/depletion after FDR correction. 

 
 

GISTIC 
Region 

Alteration BRCA 
Altered 

BRCA 
WT 

Fisher's 
exact test 

FDR Relation Genes in the regions 

8q24.21 AMP 48 53 2.51E-05 0.00203 Co-oc. MYC PVT1  

19q12 AMP 8 56 0.00023 0.00963 Mut.Ex CCNE1 

8q24.3 AMP 37 42 0.00069 0.01877 Co-oc. ZNF7 ZNF623 SHARPIN VPS28 PUF60 COMMD5 HSF1 
GRINA DGAT1 GPAA1 EXOSC4 PYCRL CYC1 FAM83H 
GPR172A TSTA3 LRRC14 ADCK5 ZNF34 BOP1 ZC3H3 
RPL8 PPP1R16A ZNF251 EEF1D CPSF1 MAF1 TIGD5 
KIAA1688 ZNF707 PLEC1 NRBP2 ZNF696 FBXL6 SCRIB 
SLC39A4 MFSD3 OPLAH TOP1MT KIFC2 RECQL4 
NFKBIL2 NAPRT1 RHPN1 C8ORFK29 ZFP41 MAPK15 
PARP10 KIAA1875 GPT MGC70857 GLI4 ZNF517 SCXB 
FOXH1 SPATC1 MAFA SCRT1 LY6H CYHR1 C8orf30A 
C8orf51 GSDMD EPPK1 BREA2 C8orf31 GPIHBP1 
LRRC24 C8orf73 MIR661 HEATR7A MIR937 MIR939 
SCXA LOC100130274 

19p13.13 AMP 3 32 0.00163 0.03290 Mut.Ex CCDC130 TRMT1 STX10 CC2D1A PRKACA ZSWIM4 
IER2 ASF1B NFIX RFX1 IL27RA CACNA1A NANOS3 
RLN3 PODNL1 LYL1 C19orf53 C19orf57 MRI1 SAMD1 
DCAF15 NACC1 LOC113230 PALM3 MIR181C MIR23A 
MIR24-2 MIR27A MIR181D 

1q21.2 AMP 1 21 0.00349 0.05653 Mut.Ex SETDB1 ARNT TARS2 VPS72 GOLPH3L PRUNE 
PIP5K1A LYSMD1 ENSA SCNM1 LASS2 CDC42SE1 
MCL1 FAM63A SEMA6C HORMAD1 BNIPL MLLT11 
TMOD4 ANXA9 CTSS ADAMTSL4 GABPB2 TNFAIP8L2 
CTSK ECM1 RPRD2 C1orf56 

19p12 AMP 1 17 0.01623 0.219 Mut.Ex ZNF431 ZNF430 ZNF100 ZNF429 ZNF708 ZNF85 ZNF714 
ZNF43 ZNF493 ZNF738 LOC641367  

19p13.2 AMP 3 24 0.01731 0.20036 Mut.Ex KEAP1 TYK2 EIF3G MRPL4 CDC37 KRI1 FDX1L QTRT1 
DNM2 PPAN ATG4D ILF3 DNMT1 SLC44A2 AP1M2 
ICAM3 CDKN2D RAVER1 PDE4A ICAM5 ICAM1 ICAM4 
P2RY11 ANGPTL6 RDH8 COL5A3 S1PR2 S1PR5 
C19orf66 LOC147727 C3P1 SNORD105 PPAN-P2RY11 
MIR638 SNORD105B ZGLP1  

4q13.3 AMP 0 11 0.02022 0.20474 Mut.Ex COX18 ANKRD17 MTHFD2L BTC AREG ADAMTS3 
RASSF6 EREG IL8 CXCL2 CXCL3 AFP AFM CXCL5 
NPFFR2 ALB EPGN CXCL1 PF4 PF4V1 SLC4A4 GC 
CXCL6 PPBPL2 PPBP PPBPL1  

18q11.2 AMP 0 12 0.02096 0.18864 Mut.Ex TAF4B KCTD1  

18q12.1 AMP 0 12 0.02096 0.18864 Mut.Ex KIAA1012 RNF138 DSG2 FAM59A B4GALT6 DSC2 
RNF125 DSG1 MEP1B DSC3 DSC1 DSG4 DSG3 TTR 
MCART2  

3q29 AMP 20 23 0.02162 0.15922 Co-oc. NCBP2 LSG1 WDR53 PAK2 OPA1 DLG1 LRCH3 RNF168 
PPP1R2 FYTTD1 KIAA0226 LOC152217 SENP5 PCYT1A 
RPL35A PIGX ATP13A3 LMLN SDHALP2 BDH1 
TMEM44 HRASLS TNK2 IQCG MUC20 TFRC PIGZ 
FAM43A MFI2 FGF12 MUC4 LRRC33 HES1 APOD 
ATP13A5 ZDHHC19 LRRC15 TM4SF19 LOC348840 
ATP13A4 GP5 CPN2 ACAP2 UBXN7 MGC2889 C3orf34 
C3orf59 C3orf21 OSTalpha FBXO45 LOC220729 
TCTEX1D2 C3orf43 SDHALP1 MIR570 FAM157A 
MIR922 LOC100128023 LOC100131551 

14q11.2 AMP 1 15 0.02692 0.18169 Mut.Ex METT11D1 ZNF219 NDRG2 FLJ10357 SLC39A2 TPPP2 
RNASE13 RNASE7 RNASE8 RNASE3 RNASE2 C14orf176  

6q27 DEL 4 1 0.03363 0.20953 Co-oc. FAM120B TBP PDCD2 PSMB1 FGFR1OP PHF10 SFT2D1 
MLLT4 WDR27 BRP44L QKI PARK2 RNASET2 TCTE3 
RPS6KA2 PACRG CCR6 DLL1 TTLL2 KIF25 UNC93A 
PDE10A DACT2 LOC441177 TCP10 FRMD1 PRR18 
SMOC2 T GPR31 THBS2 C6orf123 C6orf70 C6orf208 
C6orf176 LOC154449 C6orf118 LOC285796 C6orf120 
TCP10L2 C6orf122 C6orf124 HGC6.3  

8q24.12 AMP 30 44 0.04580 0.26502 Co-oc. DEPDC6 COL14A1  
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Supplementary Methods M9: HotNet 
 
We used HotNet [1] to identify subnetworks of a large protein-protein interaction network 
that contain genes with significant numbers of mutations and copy number alterations 
(CNAs). HotNet considers each mutation or CNA in each sample as a unit heat source, 
and uses a diffusion process to derive “hot'' subnetworks that contain more alterations 
than expected by chance.  Significant subnetworks are thus determined by both the 
frequency of alteration of genes in the subnetwork and the local topology of the 
subnetwork.  HotNet returns a list of subnetworks, each containing at least s genes, and 
employs a two-stage statistical test to assess the significance of the list of subnetworks. 
The first stage of the test computes a p-value for the number of subnetworks in the list, 
for different values of s, under a suitable null hypothesis. The second stage estimates 
the false discovery rate (FDR) of the list of subnetworks, thus providing a bound on the 
number of subnetworks in the list that are expected to be significant.  Finally, we assess 
the significance of each individual subnetwork in the list by comparing to known 
pathways and protein complexes (see below). 
 
We analyzed the combined mutation and copy number data for the 316 samples.  For 
each sequenced gene, we defined the gene as altered in a sample if the gene had a 
somatic mutation, or if the gene was present in a focal aberration according to GISTIC 
analysis (i.e. the gene was annotated as -2 or 2).  We excluded alterations in TP53 
because this gene is mutated in the majority of samples and we aimed to identify other 
pathways not associated with p53. We also excluded alterations in TTN, since it is 
mutated at a rate higher than expected by the background mutation rate, but analysis of 
these mutations indicates that they are likely artifacts. Moreover, we removed CNAs for 
which the sign of the aberration was not the same in at least 90% of altered samples.  
 
The resulting alteration data on 316 samples was input to HotNet (Figure S9.1). We 
used the interaction network derived from the Human Protein Reference Database 
(HPRD) [2].  For the HotNet statistical test, we generated random datasets in the 
following manner.  We simulated mutations using the estimated background mutation 
rate (1.7368 x 10-6).  We simulated CNAs using the observed distribution of CNA lengths 
and permuting their positions.  The latter minimizes potential artifacts resulting from 
functionally related genes that are both neighbors on the interaction network and close 
enough on the genome that they are affected by the same CNA.  To further reduce such 
artifacts, we applied two additional heuristics.  First, we removed candidate subnetworks 
returned by HotNet that contain 3 or more genes in the same focal CNA in more than 1% 
of the samples. Second, for subnetworks with 2 genes g1, g2 in the same focal CNA in 
more than 1% of the samples, we removed the genes that were not found in the 
subnetwork when alterations in either g1 or g2 are removed. Using this approach HotNet 
identified 32 candidate subnetworks containing at least 7 genes (p = 0.03) with a 
corresponding FDR = 0.68 for the list of subnetworks. The FDR is a conservative 
estimate of the ratio of false positives among all subnetworks reported by HotNet, and 
implies that (at least) a third of the subnetworks reported by HotNet are significant.  A 
total of 27 subnetworks remained after CNA filtering (Table S9.1 and Figure S9.2).   
 
To gain additional support for individual subnetworks and to focus attention on 
subnetworks with known biological function, we computed the overlap between the 
genes in candidate subnetworks and: i) known pathways from the KEGG database [3]; 
ii) protein complexes from PINdb [4]. Of those 27 subnetworks returned by HotNet, 12 
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had statistically significant (p ≤ 0.05) overlap with at least one KEGG pathway or PINdb 
protein complex (Table S9.2).  Among the most significant subnetworks were the core 
promoter recognition complex TFIID, the Notch signalling pathway, the cohesin complex, 
and RNA polymerase II.  In particular, the Notch signalling pathway was altered in 22% 
of samples (Figure 3B, main text).  Notch signalling has been implicated in many 
cancers [5] and the NOTCH3-JAG1 interaction has been shown to be important for 
proliferation of ovarian cancer cells [6]. 
 
For each of the 12 subnetworks reported in Table S9.2, we tested the association 
between the mutation status of each subnetwork and the expression subtypes of the 
samples, using a χ2 test. For each subnetwork, we built a contingency table in which the 
column variable is the expression subtype of a sample (Differentiated, Immunoreactive, 
Proliferative, or Mesenchymal) and the row variable is the mutation status (altered or 
unaltered) of the subnetwork in the sample.  The p-value for this test is reported for each 
subnetwork in Table S9.2.  Six subnetworks showed a statistically significant association 
between the mutation status of the subnetwork and the expression subtype (FDR<0.05 
after correction for the 12 hypothesis tests). Although each of these six subnetworks has 
a dominant expression subtype, there was insufficient power to associate only one 
expression subtype to the subnetwork. 
 
Tables 
 
Table S9.1: The 27 subnetworks identified by HotNet. (see XLS 
SupplementMethodsM9Table2.xls) 
 
Table S9.2: Significantly altered subnetworks identified with HotNet 

 
Genes KEGG pathway 

enrichment 
(p-value, corrected) 

PINdb complexes : top 
enrichment  
(p-value, corrected) 

Altered 
Samples 

(%) 

Association to 
Expression 

Subtype 
p-value  

MAML2 MAML3 MAML1 RBPJ 
NOTCH3 JAG2 JAG1 

Notch signaling pathway (<10-13) 
 

 70 (22%) 0.18 

HSF1 TAF7 TAF5 TAF4 TAF2 TAF1 
TAF6 TAF9 TAF12 CPSF1 

Basal transcription factors(<10-13) 
 

TAF4b-TFIID TAF4b-TFIID; 4b-IID; 4b/4-IID (<10-13) 
TAF4-TFIID TAF4-TFIID; 4-IID;4/4-IIB (<10-13) 
TFTC SAGA-like; hSAGA; TBP-free TAFII-
containing (<10-13) 
TFIID hTFIID; transcription initiation factor (<10-13) 

133 (42%) 0.008 

GJA1 IGF1 POLR2L SMYD3 CTGF 
POLR2G POLR2K POLR2C POLR2B 
S100A4 FBLN1 POLR2I POLR2H NOV 

RNA polymerase (2x10-13) 
Pyrimidine metabolism (6x10-10) 
Purine metabolism (8x10-9) 
Huntington's disease (3x10-8) 

PolII(G) RNAPII; Gdown1-containing Pol II (<10-13) 
TAP-tagged RNAPII RNAPII; RNA polymerase II 
(<10-13) 
RNA polymerase II DNA-directed RNA polymerase 
II; RNAP II; RNAPII; RNA pol II; RNA polII (<10-13) 
Integrator DSS1-associated; RNAPII-associated 
(10-2) 

150 (47%) 0.73 

LRRC8D NEK1 GADD45A SKIV2L2 
MPZL1 GTF2IRD1 EXOSC7 UPF3B 
GADD45GIP1 AKR1A1 UPF1 SKIV2L 
UPF2 EXOSC2 EXOSC1 SMPD4 
GADD45B EXOSC4 

RNA degradation (2x10-8) 
 

 146 (46%) 0.11 

MAP2 LMNB1 PLEC1 ITGB4 ACTC1 
ITGA6 SPTA1 MSN SPTAN1 ACTG1 
COL17A1 
 

Hypertrophic cardiomyopathy (HCM) (3x10-4) 
Dilated cardiomyopathy (3x10-4)  
Regulation of actin cytoskeleton (10-2) 
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) (10-2)  

 131 (41%) 0.01 

SMC1A NUMA1 STAG2 STAG1 
CHRAC1 POLE3 RAD21 SMARCA5 

Cell cycle (4x10-4)  SNF2h/cohesion SNF2h; ISWI-contaning (2x10-8)   
HuCHRAC CHRAC; hCHRAC; ISWI; human ISWI; 
human ISWI-containing (10-6) 
cohesin-1 14S cohesin; SA1-cohesin; SA1-
containing (10-6) 
cohesin-2  14S cohesin; SA2-cohesin; SA2-
containing (10-6) 

109 (34%) 0.009 

LY6E VAV1 FCGR2B EPHA2 CD247 
ZAP70 LAT SLA FGFR1 

T cell receptor signaling pathway(4x10-4)  
Natural killer cell mediated cytotoxicity (9x10-4) 
Fc gamma R-mediated phagocytosis (10-2)  

 121 (38%) 0.02 

KARS CD48 VARS RPS6KA1 EEF1D 
GARS KTN1 CTBP1 CTBP2 C10orf4 
HEXDC 

Aminoacyl-tRNA biosynthesis (5x10-4) 
 

CtBP CtBP co-repressor; CtBP corepressor; 
CtBP1-containing (4x10-2) 

103 (33%) 0.0003 

RASD2 IRS4 PIK3CA NRAS MRAS 
APPL1 PIK3R3 GABRB1 APLP2 

Neurotrophin signaling pathway (8x10-4) 
Insulin signaling pathway (10-3) 
Non-small cell lung cancer (3x10-3) 
Type II diabetes mellitus (3x10-3) 

 84 (27%) 0.54 

LRP2 HSPA5 P4HB HSP90B1 ASGR1 
CTSL1 APCS TG CANX 

Antigen processing and presentation (4x10-3)  118 (37%) 0.01 

NRCAM MACF1 NRXN2 CNTNAP2 
GOLGA4 CNTNAP4 PLXND1 

Cell adhesion molecules (CAMs) (10-2)  69 (22%) 0.49 
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AP2M1 AQP4 ADRA1B EHD2 AP1M2 
KCNJ11 MED4 LY9 TGOLN2 LDLR 
GAK LAMP1 RRP12 LDLRAP1 
TBC1D5 

Endocytosis (2x10-2)   113 (36%) 0.27 

 
 
Figures 

 
Figure S9.1: Overview of HotNet 
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Figure S9.2:  The 27 subnetworks identified by HotNet.  Nodes correspond to proteins, 
and are colored using a different color for each subnetwork. Edges correspond to 
interactions in HPRD [2]: colored edges are interactions between proteins in the same 
subnetwork, while gray edges are interactions between proteins in different 
subnetworks. 
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Supplemental Methods S10. Integrated Pathway Analysis 
 
Supplemental Results 
 
Frequently altered pathways in ovarian serous carcinomas 
To identify significantly altered pathways through an integrated analysis of both copy 
number and gene expression, we applied the recently developed pathway activity 
inference method PARADIGM (PMID: 20529912). The computational model 
incorporates copy number changes, gene expression data, and pathway structures to 
produce an integrated pathway activity (IPA) for every gene, complex, and genetic 
process present in the pathway database.  We use the term “entity” to refer to any 
molecule in a pathway be it a gene, complex, or small molecule. The IPA of an entity 
refers only to the final activity. For a gene, the IPA only refers to the inferred activity 
of the active state of the protein, which is inferred from copy number, gene 
expression, and the signaling of other genes in the pathway.  We applied PARADIGM 
to the ovarian samples and found alterations in many different genes and processes 
present in pathways contained in the National Cancer Institutes’ Pathway Interaction 
Database (NCI-PID). We assessed the significance of the inferred alterations using 
1000 random simulations in which pathways with the same structure were used but 
arbitrary genes were assigned at different points in the pathway. In other words, one 
random simulation for a given pathway kept the set of interactions fixed so that an 
arbitrary set of genes were connected together with the pathway’s interactions. The 
significance of all samples’ IPAs was assessed against the same null distribution to 
obtain a significance level for each entity in each sample. IPAs and the percentage of 
samples in which they are significant are listed in Table S10.1 and IPAs with a 
standard deviation of at least 0.1 are displayed as a heatmap in Figure S10.1.   
 
Table S10.2 shows the pathways altered by at least three standard deviations with 
respect to permuted samples found by PARADIGM. The FOXM1 transcription factor 
network was altered in the largest number of samples among all pathways tested – 
67%  of entities with altered activities when averaged across samples. In comparison, 
pathways with the next highest level of altered activities in the ovarian cohort 
included PLK1 signaling events (27%), Aurora B signaling (24%), and Thromboxane 
A2 receptor signaling (20%).  Thus, among the pathways in NCI-PID, the FOXM1 
network harbors significantly more altered activities than other pathways with respect 
to the ovarian samples. 
 
The FOXM1 transcription factor network was found to be differentially altered in the 
tumor samples compared to the normal controls in the highest proportion of the 
patient samples (Figure S10.2, Table S10.1). FOXM1 is a multifunctional 
transcription factor with three known dominant splice forms, each regulating distinct 
subsets of genes with a variety of roles in cell proliferation and DNA repair. The 
FOXM1c isoform directly regulates several targets with known roles in cell 
proliferation including AUKB, PLK1, CDC25, and BIRC5 (PMID:15671063). On the 
other hand, the FOXM1b isoform regulates a completely different subset of genes that 
include the DNA repair genes BRCA2 and XRCC1 (PMID:17101782). CHEK2, 
which is under indirect control of ATM, directly regulates FOXM1s expression level. 
 
We asked whether the IPAs of the FOXM1 transcription factor itself were more 
highly altered than the IPAs of other transcription factors. We compared the FOXM1 
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level of activity to all of the other 203 transcription factors in the NCI-PID. Even 
compared to other transcription factors in the NCI set, the FOXM1 transcription 
factor had significantly higher levels of activity (p<0.0001; K-S test) suggesting 
further that it may be an important signature (Figure S10.3). 
 
Because FOXM1 is also expressed in many different normal tissues of epithelial 
origin, we asked whether the signature identified by PARADIGM was due to an 
epithelial signature that would be considered normal in other tissues. To answer this, 
we downloaded an independent dataset from GEO (GSE10971) (PMID:18593983) in 
which fallopian tube epithelium and ovarian tumor tissue were microdissected and 
gene expression was assayed. We found that the levels of FOXM1 were significantly 
higher in the tumor samples compared to the normals, suggesting FOXM1 regulation 
is indeed elevated in cancerous tissue beyond what is seen in normal epithelial tissue 
(Figure S10.4).  
 
Because the entire cohort for the TCGA ovarian contained samples derived from 
high-grade serous tumors, we asked whether the FOXM1 signature was specific to 
high-grade serous.  We obtained the log expression of FOXM1 and several of its 
targets from the dataset of Etemadmoghadam et al. (2009) (PMID:19193619) in 
which both low- and high-grade serous tumors had been transcriptionally profiled.  
This independent data confirmed that FOXM1 and several of its targets are 
significantly up-regulated in serous ovarian relative to low-grade ovarian cancers 
(Figure S10.5). To determine if the 25 genes in the FOXM1 transcription factor 
network contained a significant proportion of genes with higher expression in high-
grade disease, we performed a Student’s t-test using the data from Etemadmoghadam. 
723 genes in the genome (5.4%) were found to be significantly up-regulated in high- 
versus low-grade cancer at the 0.05 significance level (corrected for multiple testing 
using the Benjamini-Hochberg method). The FOXM1 network was found to have 13  
of its genes (52%) differentially regulated, which is a significant proportion based on 
the hypergeometric test (P < 3.8*10-12). Thus, high expression of the FOXM1 network 
genes does appear to be specifically associated with high-grade disease when 
compared to the expression of typical genes in the genome. 
 
FOXM1’s role in many different cancers including breast and lung has been well 
documented but its role in ovarian cancer has not been investigated. FOXM1 is a 
multifunctional transcription factor with 3 known splice forms, each regulating 
distinct subsets of genes with a variety of roles in cell proliferation and DNA repair. 
An excerpt of FOXM1’s interaction network relevant to this analysis is shown in the 
main text as Figure 3D. The FOXM1a isoform directly regulates several targets with 
known roles in cell proliferation including AUKB, PLK1, CDC25, and BIRC5. In 
contrast, the FOXM1b isoform regulates a completely different subset of genes that 
include the DNA repair genes BRCA2 and XRCC1. CHEK2, which is under indirect 
control of ATM, directly regulates FOXM1’s expression level. In addition to 
increased expression of FOXM1 in most of the ovarian patients, a small subset also 
have increased copy number amplifications detected by CBS (19% with copy number 
increases in the top 5% quantile of all genes in the genome measured). Thus the 
alternative splicing regulation of FOXM1 may be involved in the control switch 
between DNA repair and cell proliferation. However, there is insufficient data at this 
point to support this claim since the exon structure distinguishing the isoforms and 
positions of the Exon array probes make it difficult to distinguish individual isoform 
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activities.  Future high-throughput sequencing of the mRNA of these samples may 
help determine the differential levels of the FOXM1 isoforms. The observation that 
PARADIGM detected the highest level of altered activity centered on this 
transcription factor suggests that FOXM1 resides at a critical regulatory point in the 
cell. 
 
SUPPLEMENTAL METHODS 
 
Data Sets and Pathway Interactions 
Both copy number and expression data were incorporated into PARADIGM 
inference. Since a set of eight normal tissue controls was available for analysis in the 
expression data, each patient’s gene-value was normalized by subtracting the gene’s 
median level observed in the normal fallopian control. Copy number data was 
normalized to reflect the difference in copy number between a gene’s level detected in 
tumor versus a blood normal.  For input to PARADIGM, expression data was taken 
from the same integrated dataset used for subtype analysis and the copy number was 
taken from the segmented calls of MSKCC Agilent 1M copy number data.  
 
A collection of pathways was obtained from NCI-PID on September 15, 2009 
containing 131 pathways, 11,563 interactions, and 7,204 entities. An entity is 
molecule, complex, small molecule, or abstract concept represented as “nodes” in 
PARADIGM’s graphical model. The abstract concepts correspond to  general cellular 
processes (such as “apoptosis” or “absorption of light,”) and families of genes that 
share functional activity such as the RAS family of signal transducers.  We collected 
interactions including protein-protein interactions, transcriptional regulatory 
interactions, protein modifications such as phosphorylation and ubiquitinylation 
interactions.   
 
Inference of integrated molecular activities in pathway context. 
We used PARADIGM, which assigns an integrated pathway activity (IPA) reflecting 
the copy number, gene expression, and pathway context of each entity. 
 
The significance of IPAs was assessed using permutations of gene- and patient-
specific cross-sections of data. Data for 1000 “null” patients was created by randomly 
selecting a gene-expression and copy number pair of values for each gene in the 
genome. To assess the significance of the PARADIGM IPAs, we constructed a null 
distribution by assigning random genes to pathways while preserving the pathway 
structure. 
 
Identification of FOXM1 Pathway 
While all of the genes in the FOXM1 network were used to assess the statistical 
significance during the random simulations, in  order to allow visualization of the 
FOXM1 pathway, entities directly connected to FOXM1 with significantly altered 
IPAs according to Figure S10.2 were chosen for inclusion in Figure 3D of the main 
text.  Among these, genes with roles in DNA repair and cell cycle control found to 
have literature support for interactions with FOXM1 were displayed. BRCC complex 
members, not found in the original NCI-PID pathway, were included in the plot along 
with BRCA2, which is a target of FOXM1 according to NCI-PID.  Upstream DNA 
repair targets were identified by finding upstream regulators of CHEK2 in other NCI 
pathways (e.g. an indirect link from ATM was found in the PLK3 signaling pathway).  
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Clustering 
The use of inferred activities, which represent a change in probability of activity and 
not activity directly, it enables entities of various types to be clustered together into 
one heatmap. To globally visualize the results of PARADIGM inference, Eisen 
Cluster 3.0 was used to perform feature filtering and clustering.   A standard deviation 
filtering of 0.1 resulted in 1598 out of 7204 pathway entities remaining, and average 
linkage, uncentered correlation hierarchical cluster was performed on both the entities 
and samples.
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Supplemental Figures 
 

 
Figure S10.1. Heatmap of Inferred Pathway Activities (IPAs). IPAs representing 
1598 inferences of molecular entities (rows) inferred to be activated (red) or 
inactivated (blue) are plotted for each of 316 patient tumor samples (columns). IPAs 
were hierarchically clustered by pathway entity and tumor sample, and labels on the 
right show sections of the heatmap enriched with entities of individual pathways.. The 
colorbar legend is in log base 10.
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Figure S10.2. Summary of FOXM1 integrated pathway activities (IPAs) across 
all samples. The arithmetic mean of IPAs across tumor samples for each entity in the 
FOXM1 transcription factor network is shown in red, with heavier red shading 
indicating two standard deviations. Gray line and shading indicates the mean and two 
standard deviations for IPAs derived from the 1000 ”null” samples. 
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Figure S10.3. Comparison of IPAs of FOXM1 to those of other tested 
transcription factors (TFs) in NCI Pathway Interaction Database. A. Histogram 
of IPAs with non-active (zero-valued) IPAs removed. FOXM1 targets are 
significantly more activated than other NCI TFs (P < 10-267; Kolmogorov-Smirnov 
(KS) test). B. Histogram of all IPAs including non-active IPAs. Using all IPAs, 
FOXM1’s activity relative to other TFs is interpreted with somewhat higher 
significance (P < 10-301; KS test).   
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Figures S10.4. FOXM1 is not expressed in fallopian epithelium compared to 
serous ovarian carcinoma. FOXM1’s expression levels in fallopian tube was 
compared to its levels in serous ovarian carcinoma using the data from  Tone et al 
(PMID: 18593983). FOXM1’s expression is much lower in fallopian tube, including 
in samples carrying BRCA 1/2 mutations, indicating that FOXM1’s elevated 
expression observed in the TCGA serous ovarian cancers is not simply due to an 
epithelial signature. 
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Figure S10.5. Expression of FOXM1 transcription factor network genes in high 
grade versus low grade carcinoma. Expression levels for FOXM1 and nine selected 
FOXM1 targets (based on NCI-PID) were plotted for both low-grade (I; tan boxes; 26 
samples) and high-grade (II/III; blue boxes; 296 samples) ovarian carcinomas. Seven 
out of the nine targets were showed to have significantly high expression of FOXM1 
in the high-grade carcinomas (Student’s t-test; p-values noted under boxplots). 
CDKN2A may also be differentially expressed but had a borderline t-statistic (P = 
0.01). XRCC1 was detected as differentially expressed. 
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Supplement S11: 
Calculations to identify batch effects in the ovarian mRNA expression data 

 
Nianxiang Zhang, Rehan Akbani, Keith A. Baggerly, John N. Weinstein 

University of Texas, M. D. Anderson Cancer Center Genome Data Analysis Center – 11/8/10 
 
 
Supplemental Methods: 
 
We used our correlation of correlations parameter1 to check for differences among sample 
batches.  
 

 
 
Xdi and Xdj are the mRNA expression levels of genes i and j in sample d; 
D is the number of samples; Uij is the correlation of genes i and j in batch A; the expression for 
Vij, the correlation of genes i and j in batch B, is analogous.  Then, 
 

 
 
where n denotes the number of genes, and rc is the correlation of correlations. 
 
First, we filtered out noisy genes from informative genes by selecting only those with standard 
deviation greater than 0.5 and median absolute deviation greater than 0.5. Using 2000 randomly 
sampled informative genes, we calculated all pairwise Pearson correlations between genes 
within a batch, obtaining a vector for each batch. The Pearson correlation between two such 
vectors is the rc for that pair of batches. Our null hypothesis was that no batch effect is present. 
We assessed statistical significance using a permutation test. To do so, we randomly permuted 
the sample-to-batch mapping (thereby removing any systematic structure), calculated a “null” 
set of rc values using 200 randomly sampled genes (to save computation time), and repeated 
the procedure 10,000 times to assemble null cumulative distribution functions (CDFs). 
Significance levels of the observed rc values were then estimated from the empirical CDFs with 
one-sided tests.  (Preliminary testing had shown that the 2000-gene and 200-gene random 
samples described above were easily sufficient in size to represent the entire gene sets 
accurately.) 
 
The p-values shown in Figure S11.1 serve as indicators of the severity of batch effects in 
mRNA expression data. Low p-values indicate significant batch effects, and values below 0.05 
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are shown in red. The p-values test the corresponding correlation of correlations (CR) metric, rc, 
defined above. Given that gene expression measurements are nonlinear and batch effects go 
beyond mere scaling, the CR metric is useful in that it characterizes batch differences by 
capturing changes in gene-gene interaction networks within batches. It provides an alternative 
approach to assessment of batch effects, complementing the more routine principal component 
(PCA) and clustering analyses (see Figures S11.2-9). Since it provides statistical tests and p-
values for batch effects, it is more objective than visualization of hierarchically defined clusters 
or PCA figures.  
 
We observed modest batch effects for the Affymetrix U133A mRNA data (9 significant pairs out 
of 78 batch pairs), but more severe batch effects for Agilent G4502A and Affymetrix Human 
Exon array data (23 and 22 significant pairs, respectively). However, batch effects were largely 
absent (3 significant pairs) in the unified data used for mRNA analyses in the main text of the 
article. 
 
Supplementary figure: 
 

  
Figure S11.1 Assessment of batch effects in the TCGA ovarian cancer gene expression 
data. P-values were obtained from permutation tests of pairwise correlation of 
correlations (rc) levels between batches for Affymetrix U133A level 3 data (left) and 
unified gene expression data from the three TCGA platforms (right). Red indicates a 
significant difference between batches (p<0.05, without multiple-comparisons correction).   
 
To complement those results, we performed PCA and unsupervised hierarchical clustering on 
the unified expression data (Figures S11.2-5)2. For Figure S11.4, we used the average linkage 
algorithm and Euclidean distance metric (all in the log frame, without subtracting the mean 
across samples or across genes).  Genes were filtered by removing those with standard 
deviation ≤ 0.5 across the samples. Results were similar when we used a 1-Pearson correlation 
metric with the average linkage rule (Figure S11.5). We annotated the samples by their batch 
number (top colored bar) and center of origin (bottom colored bar) to ascertain whether there 
were any significant center-specific effects or batch effects. The samples did not cluster to an 
appreciable degree by center or by batch in either PCA or clustering analysis. The results 
suggest that observed patterns or signatures in the data are not artifacts of the methods used 
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by each individual centre or technical differences among batches.  However, the importance of 
batch effects or bias obviously depends on the nature and strength of a prediction or pattern 
relationship being derived from the data.  R-scripts for checking the calculations here can be 
obtained on request (nzhang@mdanderson.org). 
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Figure S11.2: PCA plot of unified 
gene expression data, annotated by 
center. 

 Figure S11.3: PCA plot of unified gene 
expression data, annotated by batch 
number. 
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  Legend for Figures S11.2 & S11.3.  
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Fig S11.4: Unsupervised heirarchical clustering (Euclidean distance metric, average 
linkage alrogithm) of unified mRNA expression data.  The top colored bar indicates batch 
number; the bottom colored bar indicates center. 

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Center
Batch

 
Fig S11.5: Unsupervised heirarchical clustering (1-Pearson correlation metric, average 
linkage algorithm) of unified mRNA expression data.  The top colored bar indicates batch 
number; the bottom colored bar indicates center. 
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Legend for Figures S11.4-9. 
 
We applied Johnson et al.’s empirical Bayes algorithm3 to the unified gene expression data and 
performed hierarchical clustering on the data after adjusting by batch number (Figure S11.6-7) 
and by center (Figure S11.8-9) for both Euclidean distance and 1-Pearson correlation metrics. 
When we compared Figures S11.4-5 (before adjustment) with Figures S11.6-7 and S11.8-9 
(after batch and center adjustment, respectively), we saw only modest improvements in 
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uniformity.  Furthermore, given that some batches have known clinical differences from other 
batches, it is unclear to what extent the differences corrected for were biological or technical in 
origin. Therefore, we decided in favor of using unadjusted batches for the mRNA analyses. 
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Fig S11.6: Unsupervised hierarchical clustering (Euclidean distance metric, average 
linkage algorithm) of unified mRNA expression data after adjusting by batch number 
using the empirical Bayes algorithm of Johnson, et al.  The top colored bar indicates batch 
number; the bottom colored bar indicates center (see legend above) 
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Fig S11.7: Unsupervised hierarchical clustering (1-Pearson correlation metric, average 
linkage) of unified mRNA expression data after adjusting by batch number as in Figure 
S11.6.  The top colored bar indicates batch number; the bottom colored bar indicates center 
(see legend above). 
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Fig S11.8: Unsupervised hierarchical clustering (Euclidean distance metric, average 
linkage algorithm) of unified mRNA expression data after adjusting by center of origin as 
in Figure S11.6. The top colored bar indicates batch number; the bottom colored bar indicates 
center (see legend above) 
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Fig S11.9: Unsupervised hierarchical clustering (1-Pearson correlation metric, average 
linkage algorithm)of unified mRNA expression data after adjusting by center of origin as 
in Figure S11.6.  The top colored bar indicates batch number; the bottom colored bar indicates 
center (see legend above). 
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