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Born of the desire to systematize
analyses from The Cancer Genome Atlas 

pilot and scale their execution to the
dozens of remaining diseases to be 

studied, now sits atop 14+ terabytes
of TCGA data and reliably executes 

more than 1000 pipelines per month.



Because The Bad Old Days ...

Of solitary, manual experimentation ... 

%  create a folder

%  download data.from.some.where

%  run_your_computational_analysis

Then do it again Nov 13,  17, ...
Then forget ... and search, search, search
Then repeat ALL for 19 more tumors 

GBM, LUNG, AML, ...

Then multiply by 5, 10 ...  researchers at your site



Doesn’t Scale to TCGA

March 2012 Samples In

New RPPA datatype
+2087 protein samples

+917 
Methylation

April 2012 samples in Firehose (with differentials)



So Firehose Automatically Generates

Standardized analyses upon them
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 Standardized datasets

For vetted algorithms:  GISTIC, MutSig, CNMF, ...

Companioned with biologist-friendly reports

Once per month

Aggregated, version-stamped

Analysis-ready format / semantics

Twice per month



But why Firehose ...

... when TCGA data portal already exists?



We had to do this, so would you

Because TCGA data portal is more “raw” ...

 No aggregate/versioning: hundreds of micro-versioned files

Inconsistencies across data submitted by multiple centers

So, how to use portal data directly in my research?

Are they homogeneous?

 Or systematically prepared?

 To be ready to load in my R or MatLab script?
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... and does not encompass higher-level analyses

 What if I just want to view GBM gistic (CN) peaks?
 Or look at a methylation cluster?

Or see how expression in OV correlates to survival?

The most robust consensus NMF 
clustering of 565 samples using 
the 1500 most variable genes was 
identified for k = 3 clusters. We 
computed the clustering for k = 2 
to k = 8 and used the cophenetic 
correlation coefficient to 
determine the best solution.

section 6). Kaplan–Meier survival analysis of this signature showed
statistically significant association with survival in all validation data
sets (Fig. 2d and Supplementary Methods, section 6).
Negative matrix factorization consensus clustering of miRNA

expression data identified three subtypes (Supplementary Fig. 6.5).
Notably, miRNA subtype 1 overlapped the mRNA proliferative sub-
type and miRNA subtype 2 overlapped the mRNA mesenchymal
subtype (Fig. 2d). Survival duration differed significantly between
miRNA subtypes: patients with miRNA subtype-1 tumours survived
significantly longer (Fig. 2e).

Pathways influencing disease
Several analyses integrated data from the 316 fully analysed cases to
identify biology that contributes to HGS-OvCa. Analysis of the fre-
quency with which known cancer-associated pathways harboured
one or more mutations, copy number changes or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were
deregulated in 67% and 45% of cases, respectively (Fig. 3a and
SupplementaryMethods, section 8). A search for altered subnetworks
in a large protein–protein interaction network32 using HOTNET33

identified several known pathways (Supplementary Methods, section

9) including the NOTCH signalling pathway, which was altered in
23% of HGS-OvCa samples34 (Fig. 3b).
Published studies have shown that cells with mutated or methylated

BRCA1 or mutated BRCA2 have defective homologous recombination
and are highly responsive to PARP inhibitors35–38. Fig. 3c shows that 20%
of our studiedHGS-OvCa sampleshadgermline or somaticmutations in
BRCA1/2, that 11% lost BRCA1 expression through DNA hypermethy-
lation and that epigenetic silencing of BRCA1 was mutually exclusive of
BRCA1/2mutations (P5 4.43 1024, Fisher’s exact test). Univariate sur-
vival analysis of BRCA1/2 status (Fig. 3c) showed better overall survival
for BRCA1/2 mutated cases than BRCA1/2 wild-type cases. Notably,
epigenetically silenced BRCA1 cases had survival similar to BRCA1/2
wild-type HGS-OvCa tumours (respective median overall survivals of
41.5 and 41.9 months, P5 0.69, log-rank test; Supplementary Methods,
section 8, and Supplementary Fig. 8.13b). This suggests that BRCA1 is
inactivated bymutually exclusive genomic and epigenomicmechanisms
and that patient survival depends on the mechanism of inactivation.
Genomic alterations in other homologous recombination genes that
might render cells sensitive to PARP inhibitors39 discovered in this study
(Supplementary Methods, section 8, and Supplementary Fig. 8.12)
include amplification or mutation of EMSY (also known as C11orf30)
(8%), focal deletion or mutation of PTEN (7%), hypermethylation of
RAD51C (3%), mutation of ATM or ATR (2%), and mutation of
Fanconi anaemia genes (5%). Overall, homologous recombination
defects may be present in approximately half of all HGS-OvCa cases,
providing a rationale for clinical trials of PARP inhibitors targeting
tumours with these homologous-recombination-related aberrations.
Comparison between the complete set of BRCA inactivation events

and all recurrently altered copy number peaks revealed anunexpectedly
low frequency ofCCNE1 amplification in cases withBRCA inactivation
(8% of BRCA altered cases had CCNE1 amplification whereas 26% of
BRCA wild-type cases did; Q5 0.0048, adjusted for false-discovery
rate). As previously reported40, overall survival tended to be lower for
patients with CCNE1 amplification than for patients in all other cases
(P5 0.072, log-rank test; Supplementary Methods, section 8, and
Supplementary Fig. 8.14a). However, no survival disadvantage for
CCNE1-amplified cases (P5 0.24, log-rank test; Supplementary
Methods, section 8, and Supplementary Fig. 8.14b) was apparent when
looking only at BRCA wild-type cases, suggesting that the previously
reported CCNE1 survival difference can be explained by the higher
survival of BRCA-mutated cases.
Finally, we used a probabilistic graphical model (PARADIGM41) to

search for altered pathways in the US National Cancer Institute
Pathway Interaction Database42, and found that the FOXM1 tran-
scription factor network (Fig. 3d) is significantly altered in 87% of
cases (Supplementary Methods, section 10, and Supplementary Figs
10.1–10.3). FOXM1 and its proliferation-related target genes, AurB
(AURKB), CCNB1, BIRC5, CDC25 and PLK1, were consistently over-
expressed but not altered by DNA copy number changes, indicative of
transcriptional regulation.TP53 repressesFOXM1 afterDNAdamage43,
suggesting that the high rate of TP53 mutation in HGS-OvCa contri-
butes to FOXM1 overexpression. In other data sets, the FOXM1 path-
way is significantly activated in tumours relative to adjacent epithelial
tissue44–46 (SupplementaryMethods, section10, andSupplementaryFig.
10.4) and is associated with HGS-OvCa22 (Supplementary Methods,
section 10, and Supplementary Fig. 10.5).

Discussion
This TCGA study provides a large-scale integrative view of the aberra-
tions inHGS-OvCa.Overall, themutational spectrumwas surprisingly
simple. Mutations in TP53 predominated, occurring in at least 96% of
HGS-OvCa samples; and BRCA1 and BRCA2 were mutated in 22% of
tumours, owing to a combination of germline and somatic mutations.
Seven other significantly mutated genes were identified, but only in
2–6% of HGS-OvCa samples. By contrast, HGS-OvCa demonstrates a
remarkable degree of genomic disarray. The frequency of SCNAs
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Figure 2 | Gene and miRNA expression patterns of molecular subtype and
outcome prediction in HGS-OvCa. a, Tumours from TCGA and ref. 25
separated into four clusters on the basis of gene expression. b, Using a training
data set, a prognostic gene signature was defined and applied to a test data set.
c, Kaplan–Meier analysis of four independent expression profile data sets,
comparing survival for predicted higher-risk patients versus lower-risk
patients. Univariate Cox P value for risk index included. d, Tumours separated
into three clusters on the basis of miRNA expression, overlapping with gene-
based clusters as indicated. D, differentiated; I, immunoreactive; M,
mesenchymal; P, proliferative (red bold indicates high degree of overlap).
e, Differences in patient survival among the three miRNA-based clusters.
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section 6). Kaplan–Meier survival analysis of this signature showed
statistically significant association with survival in all validation data
sets (Fig. 2d and Supplementary Methods, section 6).
Negative matrix factorization consensus clustering of miRNA

expression data identified three subtypes (Supplementary Fig. 6.5).
Notably, miRNA subtype 1 overlapped the mRNA proliferative sub-
type and miRNA subtype 2 overlapped the mRNA mesenchymal
subtype (Fig. 2d). Survival duration differed significantly between
miRNA subtypes: patients with miRNA subtype-1 tumours survived
significantly longer (Fig. 2e).

Pathways influencing disease
Several analyses integrated data from the 316 fully analysed cases to
identify biology that contributes to HGS-OvCa. Analysis of the fre-
quency with which known cancer-associated pathways harboured
one or more mutations, copy number changes or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were
deregulated in 67% and 45% of cases, respectively (Fig. 3a and
SupplementaryMethods, section 8). A search for altered subnetworks
in a large protein–protein interaction network32 using HOTNET33

identified several known pathways (Supplementary Methods, section

9) including the NOTCH signalling pathway, which was altered in
23% of HGS-OvCa samples34 (Fig. 3b).
Published studies have shown that cells with mutated or methylated

BRCA1 or mutated BRCA2 have defective homologous recombination
and are highly responsive to PARP inhibitors35–38. Fig. 3c shows that 20%
of our studiedHGS-OvCa sampleshadgermline or somaticmutations in
BRCA1/2, that 11% lost BRCA1 expression through DNA hypermethy-
lation and that epigenetic silencing of BRCA1 was mutually exclusive of
BRCA1/2mutations (P5 4.43 1024, Fisher’s exact test). Univariate sur-
vival analysis of BRCA1/2 status (Fig. 3c) showed better overall survival
for BRCA1/2 mutated cases than BRCA1/2 wild-type cases. Notably,
epigenetically silenced BRCA1 cases had survival similar to BRCA1/2
wild-type HGS-OvCa tumours (respective median overall survivals of
41.5 and 41.9 months, P5 0.69, log-rank test; Supplementary Methods,
section 8, and Supplementary Fig. 8.13b). This suggests that BRCA1 is
inactivated bymutually exclusive genomic and epigenomicmechanisms
and that patient survival depends on the mechanism of inactivation.
Genomic alterations in other homologous recombination genes that
might render cells sensitive to PARP inhibitors39 discovered in this study
(Supplementary Methods, section 8, and Supplementary Fig. 8.12)
include amplification or mutation of EMSY (also known as C11orf30)
(8%), focal deletion or mutation of PTEN (7%), hypermethylation of
RAD51C (3%), mutation of ATM or ATR (2%), and mutation of
Fanconi anaemia genes (5%). Overall, homologous recombination
defects may be present in approximately half of all HGS-OvCa cases,
providing a rationale for clinical trials of PARP inhibitors targeting
tumours with these homologous-recombination-related aberrations.
Comparison between the complete set of BRCA inactivation events

and all recurrently altered copy number peaks revealed anunexpectedly
low frequency ofCCNE1 amplification in cases withBRCA inactivation
(8% of BRCA altered cases had CCNE1 amplification whereas 26% of
BRCA wild-type cases did; Q5 0.0048, adjusted for false-discovery
rate). As previously reported40, overall survival tended to be lower for
patients with CCNE1 amplification than for patients in all other cases
(P5 0.072, log-rank test; Supplementary Methods, section 8, and
Supplementary Fig. 8.14a). However, no survival disadvantage for
CCNE1-amplified cases (P5 0.24, log-rank test; Supplementary
Methods, section 8, and Supplementary Fig. 8.14b) was apparent when
looking only at BRCA wild-type cases, suggesting that the previously
reported CCNE1 survival difference can be explained by the higher
survival of BRCA-mutated cases.
Finally, we used a probabilistic graphical model (PARADIGM41) to

search for altered pathways in the US National Cancer Institute
Pathway Interaction Database42, and found that the FOXM1 tran-
scription factor network (Fig. 3d) is significantly altered in 87% of
cases (Supplementary Methods, section 10, and Supplementary Figs
10.1–10.3). FOXM1 and its proliferation-related target genes, AurB
(AURKB), CCNB1, BIRC5, CDC25 and PLK1, were consistently over-
expressed but not altered by DNA copy number changes, indicative of
transcriptional regulation.TP53 repressesFOXM1 afterDNAdamage43,
suggesting that the high rate of TP53 mutation in HGS-OvCa contri-
butes to FOXM1 overexpression. In other data sets, the FOXM1 path-
way is significantly activated in tumours relative to adjacent epithelial
tissue44–46 (SupplementaryMethods, section10, andSupplementaryFig.
10.4) and is associated with HGS-OvCa22 (Supplementary Methods,
section 10, and Supplementary Fig. 10.5).

Discussion
This TCGA study provides a large-scale integrative view of the aberra-
tions inHGS-OvCa.Overall, themutational spectrumwas surprisingly
simple. Mutations in TP53 predominated, occurring in at least 96% of
HGS-OvCa samples; and BRCA1 and BRCA2 were mutated in 22% of
tumours, owing to a combination of germline and somatic mutations.
Seven other significantly mutated genes were identified, but only in
2–6% of HGS-OvCa samples. By contrast, HGS-OvCa demonstrates a
remarkable degree of genomic disarray. The frequency of SCNAs
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Figure 2 | Gene and miRNA expression patterns of molecular subtype and
outcome prediction in HGS-OvCa. a, Tumours from TCGA and ref. 25
separated into four clusters on the basis of gene expression. b, Using a training
data set, a prognostic gene signature was defined and applied to a test data set.
c, Kaplan–Meier analysis of four independent expression profile data sets,
comparing survival for predicted higher-risk patients versus lower-risk
patients. Univariate Cox P value for risk index included. d, Tumours separated
into three clusters on the basis of miRNA expression, overlapping with gene-
based clusters as indicated. D, differentiated; I, immunoreactive; M,
mesenchymal; P, proliferative (red bold indicates high degree of overlap).
e, Differences in patient survival among the three miRNA-based clusters.
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Survival

stands in striking contrast to previous TCGA findings in glioblas-
toma47, where there were more recurrently mutated genes with far
fewer chromosome arm-level or focal SCNAs (Fig. 1a). A high preval-
ence of mutations and promoter methylation in putative DNA repair
genes, including homologous recombination components, may
explain the high prevalence of SCNAs. The mutation spectrum marks
HGS-OvCa as completely distinct from other ovarian cancer histolo-
gical subtypes. For example, clear-cell ovarian cancer tumours have
few TP53 mutations but have recurrent ARID1A and PIK3CA muta-
tions48–50; endometrioid ovarian cancer tumours have frequent
CTNNB1, ARID1A and PIK3CA mutations and a lower rate of TP53
(refs 49, 50); and mucinous ovarian cancer tumours have prevalent
KRASmutations51. These differences between ovarian cancer subtypes
probably reflect a combination of aetiological and lineage effects, and
represent an opportunity to improve ovarian cancer outcomes through
subtype-stratified care.
Identification of new therapeutic approaches is a central goal of the

TCGA. The,50% of HGS-OvCa tumours with homologous recom-
bination defects may benefit from PARP inhibitors. Beyond this, the
commonly deregulated pathways, RB, RAS/PI3K, FOXM1 and
NOTCH, provide opportunities for therapeutic treatment. Finally,
inhibitors already exist for 22 genes in regions of recurrent amplifica-
tion (Supplementary Methods, section 5, and Supplementary Table
5.3), warranting assessment in HGS-OvCa cases where the target
genes are amplified. Overall, these discoveries set the stage for
approaches to the treatment of HGS-OvCa in which aberrant genes
or networks are detected and targeted with therapies selected to be
effective against these specific aberrations.

METHODS SUMMARY
All specimens were obtained from patients with appropriate consent from the
relevant institutional review board. DNA and RNA were collected from samples
using the Allprep kit (Qiagen). We used commercial technology for capture and
sequencing of exomes from whole-genome-amplified tumour DNA and normal
DNA. DNA sequences were aligned to NCBI Build 36 of the human genome;
duplicate reads were excluded from mutation calling. Validation of mutations
occurred on a separate whole-genome amplification of DNA from the same
tumour. Significantly mutated genes were identified by comparing them with
expectation models based on the exact measured rates of specific sequence lesions.
CHASM20 andMutationAssessor (SupplementaryMethods, section4)were used to
identify functional mutations. GISTIC analysis of the circular-binary-segmented
Agilent 1M feature copy number data was used to identify recurrent peaks by
comparison with the results from the other platforms, to determine likely plat-
form-specific artefacts. Consensus clustering approaches were used to analyse
mRNA, miRNA and methylation subtypes as well as predictors of outcome using
previous approaches47. HOTNET33 was used to identify portions of the protein–
protein interaction network that have more events than are expected by chance.
Networks that had a significant probability of being valid were evaluated for
increased fraction of known annotations. PARADIGM41 was used to estimate
integratedpathwayactivity, to identify portionsof thenetworkmodels differentially
active in HGS-OvCa.
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Figure 3 | Altered pathways inHGS-OvCa. a, b, RB andPI3K/RASpathways,
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somaticmutations, DNA copy number changes or, in some cases, by significant
up- or downregulation relative to expression in diploid tumours. Alteration
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overall survival) than BRCA1/2 wild type, and that BRCA1 epigenetically
silenced cases have poorer outcomes. FA, Fanconi anaemia. d, FOXM1
transcription factor network is activated in 87% of cases. Each gene is depicted
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were taken from the US National Cancer Institute Pathway Interaction
Database. Dashed lines indicate transcriptional regulation.
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This is the analysis overview for Firehose run "21 March 2012".
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Spend weeks obtaining protected data credentials

You might otherwise need to ...

 Or becoming a TCGA data guru

 And still more time, mastering the analytics

Complexity & volume preclude

this approach for many teams/individuals
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Standardized Data:          273 platforms (across 23 tumorsets) x 2/month  = 546
Standardized Analyses:   (Up to) 33 analyses x 23 tumorsets / month        > 500

KiloPipeline Per Month
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Ok, so far so good, but then where are ...

Standardized, analysis-ready TCGA data?

And standardized analyses upon them?



http://gdac.broadinstitute.org

Data
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Analysis
Dashboard

http://gdac.broadinstitute.org
http://gdac.broadinstitute.org


1 Standardized Data Dashboard

Text

Fast/Simple 
Overview Of

Analysis-ready data



1 Standardized Data Dashboard

Or drill down for detailed info

e.g. showing 2 methylation platforms,
and originating center (Johns Hopkins)



1 Standardized Data Dashboard
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1 Standardized Data Dashboard

Browse on site

Download interactively
by mouse click

Or programmatically with
firehose_get

command line tool



1 Standardized Data Dashboard

With Supporting Documentation

Release Notes
Rationale

Frequently Asked Questions



Ok, that covers the data, but ...

What about that GISTIC peak?

Or methylation & expression cluster?



2 Analyses Dashboard

Similar Layout to Data Dashboard

Supplemented with analysis pipeline status
(showing 27 of 33 pipelines ran for breast cancer)
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section 6). Kaplan–Meier survival analysis of this signature showed
statistically significant association with survival in all validation data
sets (Fig. 2d and Supplementary Methods, section 6).
Negative matrix factorization consensus clustering of miRNA

expression data identified three subtypes (Supplementary Fig. 6.5).
Notably, miRNA subtype 1 overlapped the mRNA proliferative sub-
type and miRNA subtype 2 overlapped the mRNA mesenchymal
subtype (Fig. 2d). Survival duration differed significantly between
miRNA subtypes: patients with miRNA subtype-1 tumours survived
significantly longer (Fig. 2e).

Pathways influencing disease
Several analyses integrated data from the 316 fully analysed cases to
identify biology that contributes to HGS-OvCa. Analysis of the fre-
quency with which known cancer-associated pathways harboured
one or more mutations, copy number changes or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were
deregulated in 67% and 45% of cases, respectively (Fig. 3a and
SupplementaryMethods, section 8). A search for altered subnetworks
in a large protein–protein interaction network32 using HOTNET33

identified several known pathways (Supplementary Methods, section

9) including the NOTCH signalling pathway, which was altered in
23% of HGS-OvCa samples34 (Fig. 3b).
Published studies have shown that cells with mutated or methylated

BRCA1 or mutated BRCA2 have defective homologous recombination
and are highly responsive to PARP inhibitors35–38. Fig. 3c shows that 20%
of our studiedHGS-OvCa sampleshadgermline or somaticmutations in
BRCA1/2, that 11% lost BRCA1 expression through DNA hypermethy-
lation and that epigenetic silencing of BRCA1 was mutually exclusive of
BRCA1/2mutations (P5 4.43 1024, Fisher’s exact test). Univariate sur-
vival analysis of BRCA1/2 status (Fig. 3c) showed better overall survival
for BRCA1/2 mutated cases than BRCA1/2 wild-type cases. Notably,
epigenetically silenced BRCA1 cases had survival similar to BRCA1/2
wild-type HGS-OvCa tumours (respective median overall survivals of
41.5 and 41.9 months, P5 0.69, log-rank test; Supplementary Methods,
section 8, and Supplementary Fig. 8.13b). This suggests that BRCA1 is
inactivated bymutually exclusive genomic and epigenomicmechanisms
and that patient survival depends on the mechanism of inactivation.
Genomic alterations in other homologous recombination genes that
might render cells sensitive to PARP inhibitors39 discovered in this study
(Supplementary Methods, section 8, and Supplementary Fig. 8.12)
include amplification or mutation of EMSY (also known as C11orf30)
(8%), focal deletion or mutation of PTEN (7%), hypermethylation of
RAD51C (3%), mutation of ATM or ATR (2%), and mutation of
Fanconi anaemia genes (5%). Overall, homologous recombination
defects may be present in approximately half of all HGS-OvCa cases,
providing a rationale for clinical trials of PARP inhibitors targeting
tumours with these homologous-recombination-related aberrations.
Comparison between the complete set of BRCA inactivation events

and all recurrently altered copy number peaks revealed anunexpectedly
low frequency ofCCNE1 amplification in cases withBRCA inactivation
(8% of BRCA altered cases had CCNE1 amplification whereas 26% of
BRCA wild-type cases did; Q5 0.0048, adjusted for false-discovery
rate). As previously reported40, overall survival tended to be lower for
patients with CCNE1 amplification than for patients in all other cases
(P5 0.072, log-rank test; Supplementary Methods, section 8, and
Supplementary Fig. 8.14a). However, no survival disadvantage for
CCNE1-amplified cases (P5 0.24, log-rank test; Supplementary
Methods, section 8, and Supplementary Fig. 8.14b) was apparent when
looking only at BRCA wild-type cases, suggesting that the previously
reported CCNE1 survival difference can be explained by the higher
survival of BRCA-mutated cases.
Finally, we used a probabilistic graphical model (PARADIGM41) to

search for altered pathways in the US National Cancer Institute
Pathway Interaction Database42, and found that the FOXM1 tran-
scription factor network (Fig. 3d) is significantly altered in 87% of
cases (Supplementary Methods, section 10, and Supplementary Figs
10.1–10.3). FOXM1 and its proliferation-related target genes, AurB
(AURKB), CCNB1, BIRC5, CDC25 and PLK1, were consistently over-
expressed but not altered by DNA copy number changes, indicative of
transcriptional regulation.TP53 repressesFOXM1 afterDNAdamage43,
suggesting that the high rate of TP53 mutation in HGS-OvCa contri-
butes to FOXM1 overexpression. In other data sets, the FOXM1 path-
way is significantly activated in tumours relative to adjacent epithelial
tissue44–46 (SupplementaryMethods, section10, andSupplementaryFig.
10.4) and is associated with HGS-OvCa22 (Supplementary Methods,
section 10, and Supplementary Fig. 10.5).

Discussion
This TCGA study provides a large-scale integrative view of the aberra-
tions inHGS-OvCa.Overall, themutational spectrumwas surprisingly
simple. Mutations in TP53 predominated, occurring in at least 96% of
HGS-OvCa samples; and BRCA1 and BRCA2 were mutated in 22% of
tumours, owing to a combination of germline and somatic mutations.
Seven other significantly mutated genes were identified, but only in
2–6% of HGS-OvCa samples. By contrast, HGS-OvCa demonstrates a
remarkable degree of genomic disarray. The frequency of SCNAs
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Figure 2 | Gene and miRNA expression patterns of molecular subtype and
outcome prediction in HGS-OvCa. a, Tumours from TCGA and ref. 25
separated into four clusters on the basis of gene expression. b, Using a training
data set, a prognostic gene signature was defined and applied to a test data set.
c, Kaplan–Meier analysis of four independent expression profile data sets,
comparing survival for predicted higher-risk patients versus lower-risk
patients. Univariate Cox P value for risk index included. d, Tumours separated
into three clusters on the basis of miRNA expression, overlapping with gene-
based clusters as indicated. D, differentiated; I, immunoreactive; M,
mesenchymal; P, proliferative (red bold indicates high degree of overlap).
e, Differences in patient survival among the three miRNA-based clusters.
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section 6). Kaplan–Meier survival analysis of this signature showed
statistically significant association with survival in all validation data
sets (Fig. 2d and Supplementary Methods, section 6).
Negative matrix factorization consensus clustering of miRNA

expression data identified three subtypes (Supplementary Fig. 6.5).
Notably, miRNA subtype 1 overlapped the mRNA proliferative sub-
type and miRNA subtype 2 overlapped the mRNA mesenchymal
subtype (Fig. 2d). Survival duration differed significantly between
miRNA subtypes: patients with miRNA subtype-1 tumours survived
significantly longer (Fig. 2e).

Pathways influencing disease
Several analyses integrated data from the 316 fully analysed cases to
identify biology that contributes to HGS-OvCa. Analysis of the fre-
quency with which known cancer-associated pathways harboured
one or more mutations, copy number changes or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were
deregulated in 67% and 45% of cases, respectively (Fig. 3a and
SupplementaryMethods, section 8). A search for altered subnetworks
in a large protein–protein interaction network32 using HOTNET33

identified several known pathways (Supplementary Methods, section

9) including the NOTCH signalling pathway, which was altered in
23% of HGS-OvCa samples34 (Fig. 3b).
Published studies have shown that cells with mutated or methylated

BRCA1 or mutated BRCA2 have defective homologous recombination
and are highly responsive to PARP inhibitors35–38. Fig. 3c shows that 20%
of our studiedHGS-OvCa sampleshadgermline or somaticmutations in
BRCA1/2, that 11% lost BRCA1 expression through DNA hypermethy-
lation and that epigenetic silencing of BRCA1 was mutually exclusive of
BRCA1/2mutations (P5 4.43 1024, Fisher’s exact test). Univariate sur-
vival analysis of BRCA1/2 status (Fig. 3c) showed better overall survival
for BRCA1/2 mutated cases than BRCA1/2 wild-type cases. Notably,
epigenetically silenced BRCA1 cases had survival similar to BRCA1/2
wild-type HGS-OvCa tumours (respective median overall survivals of
41.5 and 41.9 months, P5 0.69, log-rank test; Supplementary Methods,
section 8, and Supplementary Fig. 8.13b). This suggests that BRCA1 is
inactivated bymutually exclusive genomic and epigenomicmechanisms
and that patient survival depends on the mechanism of inactivation.
Genomic alterations in other homologous recombination genes that
might render cells sensitive to PARP inhibitors39 discovered in this study
(Supplementary Methods, section 8, and Supplementary Fig. 8.12)
include amplification or mutation of EMSY (also known as C11orf30)
(8%), focal deletion or mutation of PTEN (7%), hypermethylation of
RAD51C (3%), mutation of ATM or ATR (2%), and mutation of
Fanconi anaemia genes (5%). Overall, homologous recombination
defects may be present in approximately half of all HGS-OvCa cases,
providing a rationale for clinical trials of PARP inhibitors targeting
tumours with these homologous-recombination-related aberrations.
Comparison between the complete set of BRCA inactivation events

and all recurrently altered copy number peaks revealed anunexpectedly
low frequency ofCCNE1 amplification in cases withBRCA inactivation
(8% of BRCA altered cases had CCNE1 amplification whereas 26% of
BRCA wild-type cases did; Q5 0.0048, adjusted for false-discovery
rate). As previously reported40, overall survival tended to be lower for
patients with CCNE1 amplification than for patients in all other cases
(P5 0.072, log-rank test; Supplementary Methods, section 8, and
Supplementary Fig. 8.14a). However, no survival disadvantage for
CCNE1-amplified cases (P5 0.24, log-rank test; Supplementary
Methods, section 8, and Supplementary Fig. 8.14b) was apparent when
looking only at BRCA wild-type cases, suggesting that the previously
reported CCNE1 survival difference can be explained by the higher
survival of BRCA-mutated cases.
Finally, we used a probabilistic graphical model (PARADIGM41) to

search for altered pathways in the US National Cancer Institute
Pathway Interaction Database42, and found that the FOXM1 tran-
scription factor network (Fig. 3d) is significantly altered in 87% of
cases (Supplementary Methods, section 10, and Supplementary Figs
10.1–10.3). FOXM1 and its proliferation-related target genes, AurB
(AURKB), CCNB1, BIRC5, CDC25 and PLK1, were consistently over-
expressed but not altered by DNA copy number changes, indicative of
transcriptional regulation.TP53 repressesFOXM1 afterDNAdamage43,
suggesting that the high rate of TP53 mutation in HGS-OvCa contri-
butes to FOXM1 overexpression. In other data sets, the FOXM1 path-
way is significantly activated in tumours relative to adjacent epithelial
tissue44–46 (SupplementaryMethods, section10, andSupplementaryFig.
10.4) and is associated with HGS-OvCa22 (Supplementary Methods,
section 10, and Supplementary Fig. 10.5).

Discussion
This TCGA study provides a large-scale integrative view of the aberra-
tions inHGS-OvCa.Overall, themutational spectrumwas surprisingly
simple. Mutations in TP53 predominated, occurring in at least 96% of
HGS-OvCa samples; and BRCA1 and BRCA2 were mutated in 22% of
tumours, owing to a combination of germline and somatic mutations.
Seven other significantly mutated genes were identified, but only in
2–6% of HGS-OvCa samples. By contrast, HGS-OvCa demonstrates a
remarkable degree of genomic disarray. The frequency of SCNAs
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Figure 2 | Gene and miRNA expression patterns of molecular subtype and
outcome prediction in HGS-OvCa. a, Tumours from TCGA and ref. 25
separated into four clusters on the basis of gene expression. b, Using a training
data set, a prognostic gene signature was defined and applied to a test data set.
c, Kaplan–Meier analysis of four independent expression profile data sets,
comparing survival for predicted higher-risk patients versus lower-risk
patients. Univariate Cox P value for risk index included. d, Tumours separated
into three clusters on the basis of miRNA expression, overlapping with gene-
based clusters as indicated. D, differentiated; I, immunoreactive; M,
mesenchymal; P, proliferative (red bold indicates high degree of overlap).
e, Differences in patient survival among the three miRNA-based clusters.
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stands in striking contrast to previous TCGA findings in glioblas-
toma47, where there were more recurrently mutated genes with far
fewer chromosome arm-level or focal SCNAs (Fig. 1a). A high preval-
ence of mutations and promoter methylation in putative DNA repair
genes, including homologous recombination components, may
explain the high prevalence of SCNAs. The mutation spectrum marks
HGS-OvCa as completely distinct from other ovarian cancer histolo-
gical subtypes. For example, clear-cell ovarian cancer tumours have
few TP53 mutations but have recurrent ARID1A and PIK3CA muta-
tions48–50; endometrioid ovarian cancer tumours have frequent
CTNNB1, ARID1A and PIK3CA mutations and a lower rate of TP53
(refs 49, 50); and mucinous ovarian cancer tumours have prevalent
KRASmutations51. These differences between ovarian cancer subtypes
probably reflect a combination of aetiological and lineage effects, and
represent an opportunity to improve ovarian cancer outcomes through
subtype-stratified care.
Identification of new therapeutic approaches is a central goal of the

TCGA. The,50% of HGS-OvCa tumours with homologous recom-
bination defects may benefit from PARP inhibitors. Beyond this, the
commonly deregulated pathways, RB, RAS/PI3K, FOXM1 and
NOTCH, provide opportunities for therapeutic treatment. Finally,
inhibitors already exist for 22 genes in regions of recurrent amplifica-
tion (Supplementary Methods, section 5, and Supplementary Table
5.3), warranting assessment in HGS-OvCa cases where the target
genes are amplified. Overall, these discoveries set the stage for
approaches to the treatment of HGS-OvCa in which aberrant genes
or networks are detected and targeted with therapies selected to be
effective against these specific aberrations.

METHODS SUMMARY
All specimens were obtained from patients with appropriate consent from the
relevant institutional review board. DNA and RNA were collected from samples
using the Allprep kit (Qiagen). We used commercial technology for capture and
sequencing of exomes from whole-genome-amplified tumour DNA and normal
DNA. DNA sequences were aligned to NCBI Build 36 of the human genome;
duplicate reads were excluded from mutation calling. Validation of mutations
occurred on a separate whole-genome amplification of DNA from the same
tumour. Significantly mutated genes were identified by comparing them with
expectation models based on the exact measured rates of specific sequence lesions.
CHASM20 andMutationAssessor (SupplementaryMethods, section4)were used to
identify functional mutations. GISTIC analysis of the circular-binary-segmented
Agilent 1M feature copy number data was used to identify recurrent peaks by
comparison with the results from the other platforms, to determine likely plat-
form-specific artefacts. Consensus clustering approaches were used to analyse
mRNA, miRNA and methylation subtypes as well as predictors of outcome using
previous approaches47. HOTNET33 was used to identify portions of the protein–
protein interaction network that have more events than are expected by chance.
Networks that had a significant probability of being valid were evaluated for
increased fraction of known annotations. PARADIGM41 was used to estimate
integratedpathwayactivity, to identify portionsof thenetworkmodels differentially
active in HGS-OvCa.
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