

January 31, 2012

Acknowledgements

PI: Lynda Chin, Gaddy Getz

Broad **Michael Noble Douglas Voet Gordon Saksena** Kristian Cibulskis **Rui Jing** Michael Lawrence Pei Lin Aaron McKenna Andrey Sivachenko **Carrie Sougnez** Petar Stojanov Lihua Zhou Lee Lichtenstein Robert Zupko Dan DiCara **Raktim Sinha**

Belfler-DFCI

Yonghong Xiao Juinhua Zhang Spring Liu Sachet Shukla Hailei Zhang Terrence Wu

IGV & GenePattern teams @ Broad

Jill Mesirov Michael Reich Peter Carr Marc-Danie Nazaire Jim Robinson Helga Thorvaldsdottir

Harvard Peter Park Nils Gehlenborg Semin Lee Richard Park

Matthew Meyerson Todd Golub Eric Lander

OUTLINE

- Why (yet another pipeline)?
 What (is Firehose, anyway)?
 How (will it help)?
- IV. Insights (gained so far)

1: WHY?

ICGA

ACRONYM: THE CANCER GENOME ATLAS SYNONYM: FLOOD (OF DATA & ALGORITHMS)

- Thousands of samples: 23 tumor sets + clinical
- Already 5K patient cases, heading to 11K+ total
- Swirling amongst 20 centers nationwide
- TODAY ... AND EVOLVING DAILY

Tremendous National-Scale Data Coordination & Standards Challenge

COMPLEX LIFE CYCLE OF A TCGA SAMPLE

MOTIVATION

• At this point you have a broad sense of the TCGA centers and data stream

- But how do they come together to answer common biological questions?
- Such as:

Is my gene of interest altered in this tumor type? How? Is that alteration significantly above the background rate? What distinguishes tumors with clinical or molecular feature X?

- There is no one-size-fits-all, cookie-cutter method to answer such questions
- But some analyses are common to many questions and can be automated:
 - Mutation calling, classifying, summarizing and significance-testing
 - Copy number alteration detection and significance-testing
 - Expression- and methylation-based clustering
 - Associating genomic data with common clinical, treatment or survival groups

- These common results then become building blocks for higher-level analysis
- So that downstream users do not have to repeat each time
- Nor perform ad-hoc reinvention of methods
- Nor download all low-level data from which they were generated
- ... just to utilize a lower-level analysis result for higher-level, integrative questions
- Nor should they institute their own ad-hoc data freeze/versioning scheme
- ... to ensure accuracy & reproducibility of analytic/statistical results
- Nor institute ad-hoc QC program ... to minimize human error in large-data analyses

It is these concerns which Firehose aims to address.

II: WHAT?

WHAT IS FIREHOSE?

Providing

- Version control for computational experiments
- Coupled with automated pipeline infrastructure
- Where both analysis code AND data are versioned
- Towards highest possible standards of:
 - Throughput
 - ► Transparency Reproducibility
 - Scientific Vetting
 - And ultimately, Reliability

Because The Bad Old Days: Manual Experimentation

% create a folder

% download **data.from.some.where**

% perform local data validation

% run_your_computational_analysis

Then do it again Nov 13, 17, ... Then forget ... and search, search, search Then repeat ALL for 19 more tumors GBM, LUNG, AML, ...

Then multiply by 5, 10 ... researchers at your site

DOESN'T SCALE TO TCGA

Summary of TCGA Tumor Data Ingested into Broad GDAC Pipeline 2012_01_24 stddata Run

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	MAF	Protein
BLCA	59	36	35	0	0	0	0	54	0	
BRCA	855	825	781	313	529	450	0	781	507	
CESC	75	6	36	0	0	0	0	8	0	
COADREAD	591	584	565	236	224	78	0	255	224	
DLBC	10	0	0	0	0	0	0	0	0	
GBM	596	544	537	287	542	0	491	0	276	
HNSC	263	163	165	0	0	5	0	89	0	
KIRC	502	502	489	219	72	469	0	463	327	
KIRP	107	63	43	36	16	14	0	16	0	
LAML	202	200	0	192	0	179	0	187	199	
LGG	119	85	80	0	27	0	0	30	0	
LIHC	59	42	53	0	0	17	0	28	0	
LNNH	2	0	0	0	0	0	0	0	0	
LUAD	331	235	205	127	32	0	0	95	147	
LUSC	283	225	211	133	154	220	0	202	178	
ov	592	580	547	551	568	0	564	46	316	
PAAD	14	0	14	0	0	0	0	0	0	
PRAD	153	0	82	0	0	0	0	63	0	
SKCM	219	0	0	0	0	0	0	0	0	
STAD	149	148	134	66	0	58	0	125	0	
THCA	230	42	85	0	0	0	0	45	0	
UCEC	448	391	363	117	54	266	0	359	239	
Totals	5859	4671	4425	2277	2218	1756	1055	2846	2413	

RPPA STATUS @ BROAD GDAC

- All available TCGA RPPA data mirrored At Broad
 - ✓ brca
 ✓ coad
 ✓ gbm
 ✓ kirc 7 tumor types so far
 ✓ ov
 ✓ read
 ✓ ucec
- Anticipated in Production Data Pipeline in Feb 2012
- Analysis pipelines under development:

collaboration with MD Anderson GDAC (Chin et al)

• Contact: Spring Liu (yingchun@broadinstitute.org)

III: How?

WHERE FIREHOSE LIVES IN TCGA

Firehose Produces

- 1. Biologist-friendly reports, companioned with
- Regular package of standard analyses results (~monthly) *For published, vetted algorithms: GISTIC, MutSig, ...* From version-stamped, standardized datasets *Generated at Broad, precursor to automated pipeline*

These broadly map to 3 roles in TCGA.

ROLE 1: MONTHLY ANALYSIS RUNS

- APPROX 20 PIPELINES, MANY TAKEN FROM TCGA PILOT
- RUN EN MASSE: AGAINST ALL AVAILABLE TCGA DATA
- WITH EASILY COMPREHENDED SUMMARY REPORTS
- LIKE DRAFT RESULTS SECTION ... SANS PUBLICATION DELAY

Correlate Clinical to MIR_CLUSTER_CONSENSUS analysis report

Summary

Nozzle : Analyst &

Biologist-Friendly

Reports

We examined the association between 'MIR_CLUSTER_CONSENSUS' and 9 clinical features across 506 samples. The analysis detected one significant finding with P value <= 0.05 and Q value <= 0.25. Details are shown in Table 1.

Results 1 significant findings

Methods & Data

CORRELATE_CLINICAL_VS_MUTATION
CORRELATE_METITYLATION_VS_MRNA
MIR_CLUSTERING_CONSENSUS
MUTATION_ASSESSOR
MUTATION_SIGNIFICANCE

- Standard visual format for ALL pipelines
- Intelligent Scoping:
 - drill from overview to details
 - Significant results "bubble up"
- don't miss needle in haystack

Firehose Reports | At-a-Glance

→ Reports are compatible with Firefox 4+, Chrome 12+, Safari 5+, Opera 11+ and Internet Explorer 9+.

Organized like a paper

- Overview ("Abstract")
- Results
- Methods & Data

With Browser Convenience

- Dynamic zooming
- And navigation
- View partial or full data
- Easily printable
- •Built-in bug reporting
- No HTML coding: just R

Firehose Reports: Example 1

ARTICLE

doi:10.1038/nature10166

REPORT & PROBLEM

Integrated genomic analyses of ovarian carcinoma

The Cancer Genome Atlas Research Network*

Ovarian Serous Cystadenocarcinoma: Mutation Analysis	1
(MutSig)	
Multitalised by Petar Stojanov (Broad Institute)	

- Overview
- Introduction
- Summary

Results

· Breakdown of Mutations by Type

Breakdown of Mutation Rates by Category Type

EXPAND ALL COLLAPSE ALL SET AUTO WOTH PRINT REPORT

- Target Coverage for Each Individual
- Distribution of Mutation Counts, Coverage, and Mutation Rates Across Samples
- Significantly Mutated Genes

ank	gene	description	N	п	81	n 2	#3	m4	85	P	9
	TP53	tumor protein p53	384444	292	48	32	37	63	112	<1.000-13	<1.890 07
2	BRCA1	breast cancer 1, early onset	1728968	9	0	0	1	0	8	1.338-06	0.013
3	NPi	neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, Watson disease)	2512246	13	1	0	1	3	8	2.430-06	0.015
4	FAT3	FAT tumor suppressor homolog 3 (Drosophila)	3559809	19	4	2	3	9	1	0.000013	0.063
5	GABRAS	gamma-aminobutyric acid (GABA) A receptor, alpha 6	423382	6	1	3	1	1	0	0.000003	0.087
6	CDK12		1299984	9	0	0	1	3	5	0.000035	0.092
7	CSMD3	CUB and Sushi multiple domains 3	3473121	19	1	8	7	8	8	0.000037	0.092
8	RB1	retinoblastoma 1 (including osteosarcoma)	791208	6	0	0	1	0	8	0.000039	0.092
9	BRCA2	breast cancer 2, early onset	2762828	10	1	0	0	2	7	0.000054	0.11
10	OR6Da6	olfactory receptor, family 5, subfamily D, member 16	295338	4	2	0	1	1	0	0.00015	0.29
	INSTALL COMPANY	de la constata de la constat	in a setting	-	-	-	-		-		

Table 2	Significantly	y mutated	genes in	HGS-OvCa
---------	---------------	-----------	----------	----------

Gene	No. of mutations	No. validated	No. unvalidated
TP53	302	294	8
BRCA1	11	10	1
CSMD3	19	19	0
NF1	13	13	0
CDK12	9	9	0
FAT3	19	18	1
GABRA6	6	6	0
BRCA2	10	10	0
RB1	6	6	0

Validated mutations are those that have been confirmed with an independent assay. Most of them are validated using a second independent whole-genome-amplification sample from the same turnour. Unvalidated mutations have not been independently confirmed but have a high likelihood to be true mutations. An extra 25 mutations in *TP53* were observed by hand curation.

Mutation Significance

Firehose Reports: Example 2

Cell

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

2	onsensus NMF
6.4	intuined by Robert Zupho (Broad Institute)
	Overview
	Introduction
	Summary
	The most robust consensus NMF clustering of 490 samples using the 7500 most variable genes was identified for $k = 4$ clusters. We computed the clustering for $k = 3$ to $k = 8$ and used the cophenetic correlation coefficient to determine the best solution.
6	Results
	Gene expression patterns of molecular subtypes
5	Consensus and correlation matrix
	SET HOLAE MADE
	Figure 3. The constitution matrix also shows if citations.

Figure 2. Gene Expression Data Identify Four Gene (A) Using the predictive 840 gene list, samples were ordered samples.

Gene Expression Clustering

Cancer Cell Article

Firehose Reports: Example 3

doi:10.1038/nature10166

ARTICLE

Integrated genomic analyses of ovarian carcinoma

The Cancer Genome Atlas Research Network*

varian Serous Cys IISTIC2)	tadenocarcinoma: Copy number analysis
Overview	
Introduction	
Bummary	
Results	
Focal results in contact torus	
Figure 1. Genomic positions of amplified in The great the represents the approximation of	gion: the X-axis represents the normalized amplification argues (top) and applification by 0 value (bottom), and all 0 value-0.21.
	5
	- And
Figure 1: Genomic positions of celeted rep prentime represents the operformance could	arm: the K-axis represents the normalised deletion signals (top) and significance by \bar{U} value (botton). The of \bar{U} value-0.05.
	6
	-

igure 1 | Genome copy number abnormalities. a, Copy number profiles of 89 HGS-OvCa, compared with profiles of 197 glioblastoma multiforme significant amplified and deleted regions, well-localized regions wi fewer genes, and regions with known cancer genes or genes identit

Copy Number Alterations

FINE PRINT

These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome & computational scientists to easily incorporate TCGA into the backdrop of ongoing research.

STARTING POINT : NOT FINAL WORD

- Aim is to enable readers (like bench bios, clinical trialists)
- To quickly take pulse of pipeline for given tumor type(s)
- With just a few glances at common representational figures
- Not deep head-scratching

Flow of Standard Analyses Runs

BUT WHILE DOING THIS WE CONSTANTLY SEE

THE BABEL PROBLEM

RARELY IS THERE AGREEMENT ON CENTRAL QUESTION:

HOW MUCH DATA DO WE HAVE?

- BI-WEEKLY OUTPUT OF OUR <u>DATA STANDARDIZER</u>
- WHICH PREPARES TCGA INPUTS FOR AUTOMATIC CONSUMPTION
 - ✓ Partition: to one sample per file
 - ✓ **Cleanup:** remove variations that are problematic for automation
 - ✓ **Selection:** filtered (by DNU list) samples merged ...
- WE USE THESE NORMED DATA FOR STANDARD ANALYSES
- AND HAVE BEGUN TO PROVIDE TO ENTIRE TCGA

Fostering TCGA-wide **Standard View** of the data stream

JAN 2012 UPDATE: OUR STDDATA PKGS FED TO ICGC, TOO

ROLE 3: TARGETED AWG RUNS

Analysis Targets Of Oppor

e.g. for coordinatec

- Example: 2 runs perform
 - Standard analyses r
 - TOO for May 2 LUN

Broad GDAC Analysis Summary lung_awg_2011_05_02 Run

Tables of Ingested Data: HTML PNG TSV

Tumor Type	# Completed	Percentage
LUSC	19	<u>79%</u>
LUAD	19	<u>79%</u>

Excerpted GISTIC report LUAD LUSC

Excerpted MutSig report LUAD LUSC

Broad Institute VPN

All LUAD Reports (needs VPN + FH login)

All LUSC Reports (needs VPN + FH login)

Excerpted Nozzle LUAD & LUSC Reports

Peek Behind The Mirror

% cd <DCC>/tcga4yeo/tumor && ds

blca has size	26G
brca has size	866G
cesc has size	17G
coad has size	402G
gbm has size	1.8T
0	
hnsc has size	73G
hnsc has size kirc has size	73G 453G
hnsc has size kirc has size kirp has size	73G 453G 64G
hnsc has size kirc has size kirp has size laml has size	73G 453G 64G 30G

lihc has size	66G
luad has size	163G
lusc has size	224G
ov has size	1.6T
paad has size	5.3G
prad has size	66G
read has size	153G
stad has size	84G
thca has size	61G
ucec has size	262G

Sept 2011: ~6.4 T total ... CEL, mage-tab, MAF, XML ...

Accessing Results

Q: How or where can I access the results of a run? A: In one of two ways:

 Both analyses and standardized data are stored in the <u>Broad repository of the TCGA Data</u> <u>Coordination Center (DCC)</u>. After signing in (TCGA credentials required), you should see something like

Name	Last modified	Size
<pre>Name Parent_Directory LATEST_RUN README.txt blca/ brca/ ccoad/ ccoadread/ full/ gbm/ hnsc/ kirc/ kirc/ kirp/ lanl/ lag/ lihe/ luad/ lusc/ ov/ paad/ prad/ read/ read/ read/ read/</pre>	Last modified 08-Oct-2011 15:34 04-Peb-2011 13:33 08-Oct-2011 11:03 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:56 08-Oct-2011 10:57 08-Oct-2011 10:58 08-Oct-2011 10:58	Size 40 411
atad/ thca/ ucec/	08-Oct-2011 11:01 08-Oct-2011 11:03 08-Oct-2011 11:01	-

Index of /tcgafiles/ftp_auth/distro_ftpusers/tcga4yeo/other/gdacs/gdacbroad

from which you may simply navigate to the tumor type and run date of interest.

 Standardized data packages can also be viewed directly within your <u>local IGV installation</u>, without signing in to the DCC, by following <u>the instructions given here.</u>

Quicklook Visualization in IGV

Directly from Broad, no TCGA credentials required

https://confluence.broadinstitute.org/display/GDAC/IGV+Data+Loading

Each data package identified by date corresponding to our GDAC runs.

IV : INSIGHTS & CHALLENGES

Insight 1:

This ... is really a <u>META-pipeline</u> of pipelines

Some of which are themselves complex pipelined codes. 504 pipes and ~1000 GenePattern modules, per run <u>Continuously evolving</u> through years of publication use.

A Tale of Two Coders

Software Engineer

Comp Bio / Researcher

Like ENI/

. In pa

Careful, deliberate design Towards production deployment Must be fastidious

simple task

Exploratory open-ended analysis Towards publication Can be messy

Overlapping, But Not Identical, Aims

Insight 2: So Unit Testing Not Enough

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

Across datasetsDownstream dependents *correctly read* outputsWith O's correctly wired to I'sAnd remainder of workflow runs to completion

Insight 3:

Versioning and Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH code AND data are versioned
- Do not trust: version and verify
- Automation not just of pipelines:
 - \checkmark but also tools used to create them
 - \checkmark and reports generated from them
 - \checkmark and data sources which feed them \square

FH web services Hydrant

Babel problem

GDAC website

DCC, dbGAP

GUIs alone ARE NOT GOOD ENOUGH for these latter tasks

Because PROCESS SCALABILITY matters too

Insight 4:

Given that TCGA arguably largest/richest cancer data ever assembled

CNMF clustering of OV miR expression yielded 3 subtypes

Discoveries lurk in our GDAC pipeline outputs

One of which correlated to significantly longer survivability

Integrated genomic analyses of ovarian carcinoma TCGA Network, Nature, in press

. Firehose for active research: low-hanging results waiting to be plucked

For More Information

P2 Added by Michael Noble, last edited by Michael Noble on Nov 15, 2011 (view change)

Frequently Asked Questions

- Q: When is the next run?
- A: As of November 2011 the Broad Institute GDAC will aim to provide 3 runs per month:
 - · Standard Data Run: started on 1st of month
 - Standard Data Run: started on 15th of month
 - Analysis Run: started shortly after second data run completes

Q: What reference genome build are you using?

A: Presently we are using hg18, but recognize the need to transition to hg19 as soon as possible. Our understanding is that TCGA standards stipulate that OV, GBM, COAD/READ, and LAML data are hg18, and all else is hg19. Q: How or where can I access the results of a run? A: In one of two ways:

 Both analyses and standardized data are stored in the <u>Broad repository of the TCGA Data</u> <u>Coordination Center (DCC)</u>. After signing in (TCGA credentials required), you should see something like

Index of /tcgafiles/ftp_auth/distro_ftpusers/tcga4yeo/other/gdacs/gdacbroad

Eane	Last modified	Size .
 Parent Directory		
LATEST NUM	08-0et-2011 15:34	40
READINE . 1.81	04-Feb-2011 13:33	411
blics/	08-Oct-2011 11:03	
acca/	08-Oct-2011 10:54	
cenc/	08-Oct-2011 11:03	
coad/	08-001-2011 10:54	
coadread/	08-0et-2011 11:01	
full/	08-Oct-2011 10:54	
ghn/	08-0et-2011 10:54	
hase/	08-Oct-2011 11:03	
kipe/	08-Oct-2011 10:57	
85797	08-0ct-2011 10:58	
Lam1/	08-Oct-2011 10:58	
las/	08-0et-2011 11:03	
libe/	08-Oct-2011 11:03	
land/	08-Det-2011 10:58	
last/	08-Oct-2011 10:58	
98/	08-Oct-2011 10:58	
pand/	08-Det-2011 11:03	
pr ad/	08-Oct-2011 11:03	
read/	08-0ct-2011 11:01	
reports/	12-0et-2011 14:12	
st.ad/	08-Det-2011 11+01	
thes/	08-0ct-2011 11:03	
vcec/	08-Oct-2011 11:01	

from which you may simply navigate to the tumor type and run date of interest.

 Standardized data packages can also be viewed directly within your local IGV installation, without signing in to the DCC, by following the instructions given here.

WWW http://gdac.broadinstitute.org Email gdac@broadinstitute.org

Broad GDAC Analysis Summary 2011_05_25 Run

TSV

Tables of Ingested Data: HTML PNG

Tumor Type	# Completed	Percentage
OV	24	100%
GBM	24	<u>100%</u>
READ	17	<u>71%</u>
LUSC	17	<u>71%</u>
LUAD	17	<u>71%</u>
COAD	17	<u>71%</u>
COADREAD	17	<u>71%</u>
BRCA	12	<u>50%</u>
KIRC	10	<u>42%</u>
KIRP	7	<u>29%</u>
UCEC	4	<u>17%</u>
LGG	4	<u>17%</u>
CESC	4	<u>17%</u>
BLCA	4	<u>17%</u>
STAD	3	<u>13%</u>
LIHC	3	<u>13%</u>
HNSC	3	<u>13%</u>
THCA	2	<u>8%</u>
PRAD	2	<u>8%</u>
LAML	2	<u>8%</u>
	gdac.broadin	stitute.org

gdac@broadinstitute.org

Email

TumorType	Biospecimen	Any_Level_1	Clinical	CNA	Methylation	mRNA	miR	MAF
BLCA	35	12	11	9	0	0	0	0
BRCA	704	524	358	507	186	434	0	0
CESC	-40	8	5	8	0	0	0	0
COAD	245	202	208	186	167	155	0	102
COADREAD	338	276	287	257	236	224	0	158
GBM	547	511	465	498	288	499	415	199
HNSC	97	59	0	57	0	0	0	0
KIRC	460	453	241	448	219	72	0	0
KIKP	/5	16	1/	16	36	41	0	0
LAML	202	30	10	20	100	0	1/0	135
LINC	50	30	0	30	0	0	0	0
LUAD	158	59	47	58	128	33	0	122
LUSC	184	184	72	142	133	134	0	150
OV	592	570	528	519	425	570	566	383
PRAD	65	65	0	64	0	0	0	0
READ	93	74	79	71	69	69	0	56
STAD	111	35	0	81	82	0	0	0
THCA	39	25	0	24	0	0	0	0
UCEC	325	220	127	215	70	0	0	0
Totals	4075	3085	2177	2970	1991	2007	1159	1147
		Pipel	ine		Not Ready	Faile	d S	ucceed
1	Aggregate_	Pipel Clusters	ine		Not Ready 0	Faile 0	d S	ucceed
1 2	Aggregate_ Clinical_A	Pipel Clusters ggregate_Tie	ine erl		Not Ready 0 0	Faile 0 0	d S	ucceed 1
1 2 3	Aggregate_ Clinical_A Clinical_Pi	Pipel Clusters ggregate_Tic ck_Tier1	ine er 1		Not Ready 0 0 0	Faile 0 0	d S	ucceed 1 1
1 2 3 4	Aggregate_ Clinical_A Clinical_Pi CopyNumb	Pipel Clusters ggregate_Tic ck_Tier1 per_GeneBy:	i ne er1 Sample		Not Ready 0 0 0 0	Faile 0 0 0 0	d Si	ucceed I I I
1 2 3 4 5	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb	Pipel Clusters ggregate_Tic ick_Tier1 per_GeneBy per_Gistic2	i ne er1 Sample		Not Ready 0 0 0 0 0	Faile 0 0 0 0 0	d S	ucceed
1 2 3 4 5 6	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb	Pipel Clusters ggregate_Tic ck_Tier1 per_GeneBy: per_Gistic2 per_Preproce	ine er1 Sample		Not Ready 0 0 0 0 0 0	Faile 0 0 0 0 0 0	d Si	ucceed 1 1 1 1 1
1 2 3 4 5 6 7	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C	Pipel Clusters ggregate_Tic ick_Tier1 ber_GeneBy ber_Gistic2 ber_Preproce Clinical_vs_1	ine er1 Sample ess miR		Not Ready 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0	d S	ucceed 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_O Correlate_O	Pipel Clusters ggregate_Tic ck_Tier1 ber_GeneBy ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_	ine er1 Sample ess miR Molecular_S	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ick_Tier1 ber_GeneBy: ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_	ine er1 Sample ess miR Molecular_S mRNA	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ck_Tier1 per_GeneBy per_Gistic2 per_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_	ine er1 Sample ess miR Molecular_S mRNA Mutation	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ck_Tier1 ber_GeneBy: ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_	ine er1 Sample ess miR Molecular_S mRNA Mutation r_vs_miR	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ck_Tier1 per_GeneBy per_Gistic2 per_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ CopyNumbe CopyNumbe	ine er1 Sample ess miR Molecular_S mRNA Mutation r_vs_miR r_vs_miR	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 11 12 13	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ck_Tier1 ber_GeneBy ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ CopyNumber CopyNumber GenomicEve	ine er1 Sample sss miR Molecular_S mRNA Mutation r_vs_miR r_vs_mRN/ nts	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ick_Tier1 ber_GeneBy ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ CopyNumber GenomicEve Methylation_	ine er1 Sample ss miR Molecular_S mRNA Mutation r_vs_miR r_vs_mRN/ nts _vs_mRNA	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	Aggregate_ Clinical_A Clinical_Pi CopyNumb CopyNumb CopyNumb Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C Correlate_C	Pipel Clusters ggregate_Tic ck_Tier1 ber_GeneBy ber_Gistic2 ber_Preproce Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ Clinical_vs_ CopyNumber CopyNumber GenomicEve Methylation_ ering_CNMI	ine er1 Sample sss miR Molecular_S mRNA Mutation r_vs_miR r_vs_mRNA nts _vs_mRNA 7	Signatures	Not Ready 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Faile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ucceed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13	Correlate_GenomicEvents	0	0	1
14	Correlate_Methylation_vs_mRNA	0	0	1
15	miR_Clustering_CNMF	0	0	1
16	miR_Clustering_Consensus	0	0	1
17	miR_FindDirectTargets	0	0	1
18	mRNA_Clustering_CNMF	0	0	1
19	mRNA_Clustering_Consensus	0	0	1
20	mRNA_Preprocess_Median	0	0	1
21	Mutation_Assessor	0	0	1
22	Mutation_Significance	0	0	1
23	Pathway_FindEnrichedGenes	0	0	1
24	Pathway_Paradigm	0	0	1
	Total	0	0	24