
Daniel DiCara, Gordon Saksena, Raktim Sinha, Rui Jing, Douglas Voet, Michael Noble!

 Broad Institute of MIT and Harvard, Cambridge!

Http://GDAC.BroadInstitute.org!

Engineering Firehose: The First Year
Robustness!

Several process improvements have been made to improve the robustness of our
work. First and foremost, a testing infrastructure has been developed. This
infrastructure consists of a Bamboo Continuous Integration server and utilities
for efficiently producing tests. It ensures that code under development is
functioning properly and producing accurate results on a regular basis. And it
allows our GDAC to quickly deploy algorithmic updates to our Analysis
Pipeline in a dependable fashion. Second, our test coverage has increased
significantly. As a consequence, it is simple to gauge the health of our GDAC
pipelines via a dashboard in Bamboo that displays testing status. Third, logging
has been significantly improved to facilitate reporting, diagnosing, and
addressing bugs when they occur. Finally, an extensive effort to manually
examine results to ensure their accuracy has been engrained in our week-to-
week activities.

Pinpoint Control and Extensibility!

Pinpoint control has been enabled via improved Firehose APIs. This has allowed
the quick and easy generation of scripts to modify, invoke, and monitor Firehose
workspaces. It has also enabled the creation of dashboards on a regular basis to
inform both internal and external users about the state of the Broad GDAC
standardized data and analyses runs. In terms of extensibility, improved Firehose
APIs have allowed us to extend the functionality of Firehose and rapidly
prototype new features without modifying the Firehose source code. Our FIrhose
Service Selector (FISS) tool is a good example. Repetitive operations and
combinations of common API calls can be easily invoked via FISS. These use
cases can ultimately inform and guide the development of new Firehose
features.

Scalability!

In terms of scalability, multiprocessing has been added in a number of places to
make maximal use of compute resources. Furthermore, use of cron has enabled
the scheduling of jobs at times when compute resources are typically under
lighter load (i.e. nighttime and weekends). Finally, improving LSF usage by
designing software that maximizes the efficiency of our farm has been a key
priority.

Scalability: Parallelized Mirroring and Dicing!

Conclusions!

The Broad GDAC has made substantial progress in improving the efficiency and
reliability of our Firehose data ingestion, standardized data, and standard
analyses activities. This was achieved by applying solid software engineering
principals to not only our codes, but also our processes. Our efforts focused on
five key areas: clarity, transparency, robustness, pinpoint control and easy
extensibility, and scalability. These improvements have facilitated the ingestion
and processing of terabytes of data on a regular basis with minimal human
interaction. Furthermore, they have improved our ability to add new data types
and algorithms to our workflows in a quick and reliable fashion. Finally, these
enhancements have allowed us to keep pace with the constantly increasing
volume of data.

Clarity & Transparency !

In terms of clarity, a number of code enhancements have been made to abstract
business logic out of procedural code spread across multiple files into concise
classes and methods. This has facilitated greater code reuse, exposed bugs, and
increased transparency. Furthermore, hard-coded features pervasive throughout
some of our code have been placed in configuration files. This permits the
overriding of default behavior in a non-invasive fashion for testing purposes or
otherwise. Finally, and most importantly, we have significantly increased
documentation of not only our software, but also our processes as well.

Abstract!

The Broad Firehose pipeline was born of the desire to systematize analyses from
The Cancer Genome Atlas (TCGA) pilot phase and scale their execution to the
dozens of remaining diseases to be studied. To realize this goal, while retaining
flexibility to incorporate emerging algorithmic advances, it was necessary to
rapidly evolve research codes, data processing scripts, and infrastructure into
mature components that reliably process terabytes of data on a monthly basis; all
towards the additional aims of high transparency and scientific credibility.
 Here we detail how that process unfolded in the first year of Firehose
operation. It has led to our view of Firehose as a virtual data factory, subject to
the same production constraints of timeliness and reliability under which
physical factories function. We review the substantial progress made in several
key areas, including semantic clarity, robustness, transparency, pinpoint control
and easy extensibility through scripting, and scalability through automation and
parallelism.
 We discuss how these improvements have not only allowed us to fulfill the
original aim of providing a monthly package of standard analyses results, but
also to create additional value for the TCGA. Three examples are our twice-
monthly standardized data packages, opportunistic runs for analysis working
groups, and our positive influence on other key processes such as mutation data
flow.

Robustness: Testing via Bamboo Continuous Integration!

Scalability: Workflow Automation!

Transparency: Website & Dashboards!
Standard Analyses Dashboard Standardized Data Dashboard

Clarity & Transparency: Tools and Process Docs!

