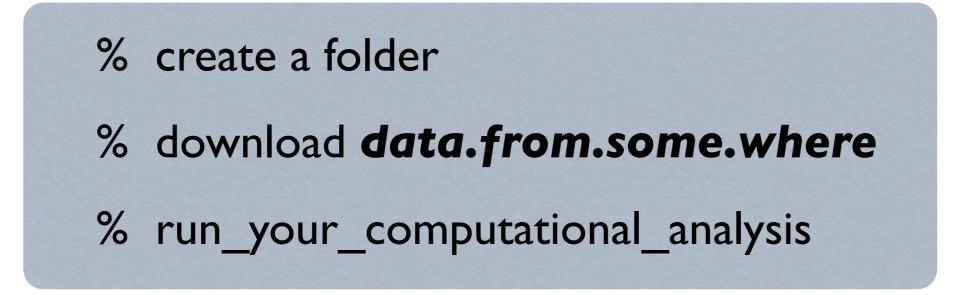
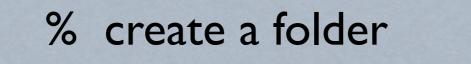


April 25, 2012


- I. Purpose of Firehose in TCGA
- II. Outline major operational products: data & analysis runs
- III. How & Where to retrieve them
- IV. Provide sense of potential value to CPTAC

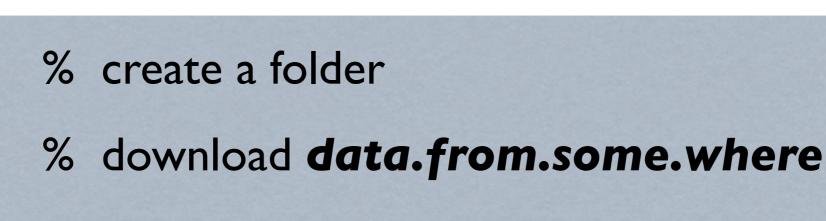
I. Purpose



Born of the desire to systematize analyses from The Cancer Genome Atlas (TCGA) pilot and scale their execution to the dozens of remaining diseases to be studied, now sits atop 14 terabytes of TCGA data and reliably executes more than 1000 pipelines per month.

Of solitary, manual experimentation ...

Of solitary, manual experimentation ...



% download **data.from.some.where**

% run_your_computational_analysis

Then do it again Nov 13, 17, ... Then forget ... and search, search, search Then repeat ALL for 19 more tumors GBM, LUNG, AML, ...

Of solitary, manual experimentation ...

% run_your_computational_analysis

Then do it again Nov 13, 17, ... Then forget ... and search, search, search Then repeat ALL for 19 more tumors GBM, LUNG, AML, ...

Then multiply by 5, 10 ... researchers at your site

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	MAF
BLCA	89	65	35	59	0	0	0	54	28
BRCA	864	844	781	808	529	751	0	781	507
CESC	99	12	36	0	0	0	0	8	0
COADREAD	591	590	565	585	224	83	0	255	224
DLBC	10	0	0	0	0	0	0	0	0
GBM	596	561	537	287	542	0	491	0	276
HNSC	294	227	165	292	0	13	0	89	0
KIRC	502	502	489	500	72	469	0	463	327
KIRP	129	84	43	36	16	14	0	16	0
LAML	202	200	0	192	0	179	0	187	199
LGG	144	117	80	0	27	0	0	30	0
LIHC	84	47	53	0	0	17	0	28	0
LNNH	2	0	0	0	0	0	0	0	0
LUAD	371	272	205	325	32	0	0	95	147
LUSC	290	269	211	282	154	220	0	202	178
OV	592	580	547	551	568	0	564	46	316
PAAD	38	0	14	0	0	0	0	0	0
PRAD	153	0	82	0	0	0	0	63	0
SKCM	253	0	0	0	0	0	0	0	0
STAD	168	163	134	118	0	58	0	125	0
THCA	274	73	85	0	0	0	0	45	0
UCEC	462	392	363	373	54	266	0	359	239
PANCANCER	6207	4998	4425	4408	2218	2070	1055	2846	2441

2012_03_06 stddata Run

March 2012 Samples In Firehose

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	89	65	58	78	0	32	0	54	0	28
BRCA	859	857	833	858	529	751	0	781	408	507
CESC	110	25	68	0	0	0	0	8	0	36
COADREAD	590	590	575	584	224	83	0	255	399	224
DLBC	27	0	0	0	0	0	0	0	0	0
GBM	595	563	546	287	542	0	491	0	214	276
HNSC	294	255	165	292	0	103	0	89	0	0
KIRC	502	502	490	500	72	469	0	463	454	327
KIRP	135	84	75	117	16	14	0	16	0	0
LAML	202	200	0	192	0	179	0	187	0	199
LGG	144	140	143	0	27	0	0	30	0	0
LIHC	84	55	58	0	0	17	0	28	0	0
LNNH	2	0	0	0	0	0	0	0	0	0
LUAD	372	274	266	347	32	106	0	95	0	147
LUSC	290	272	282	282	154	220	0	202	0	178
ov	592	580	564	551	568	0	564	46	412	316
PAAD	48	0	14	30	0	0	0	0	0	0
PRAD	153	0	100	153	0	0	0	63	0	0
SKCM	253	0	219	240	0	0	0	0	0	0
STAD	162	150	132	133	0	57	0	123	0	133
THCA	274	73	228	230	0	0	0	45	0	0
UCEC	462	425	430	451	54	266	0	359	200	239
PANCANCER	6239	5110	5246	5325	2218	2297	1055	2844	2087	2610

2012_04_12 stddata Run

April 2012

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	89	65	58	78	0	32	0	54	0	28
BRCA	859	857	833	858	529	751	0	781	408	507
CESC	110	25	68	0	0	0	0	8	0	36
COADREAD	590	590	575	584	224	83	0	255	399	224
DLBC	27	0	0	0	0	0	0	0	0	0
GBM	595	563	546	287	542	0	491	0	214	276
HNSC	294	255	165	292	0	103	0	89	0	0
KIRC	502	502	490	500	72	469	0	463	454	327
KIRP	135	84	75	117	16	14	0	16	0	0
LAML	202	200	0	192	0	179	0	187	0	199
LGG	144	140	143	0	27	0	0	30	0	0
LIHC	84	55	58	0	0	17	0	28	0	0
LNNH	2	0	0	0	0	0	0	0	0	0
LUAD	372	274	266	347	32	106	0	95	0	147
LUSC	290	272	282	282	154	220	0	202	0	178
ov	592	580	564	551	568	0	564	46	412	316
PAAD	48	0	14	30	0	0	0	0	0	0
PRAD	153	0	100	153	0	0	0	63	0	0
SKCM	253	0	219	240	0	0	0	0	0	0
STAD	162	150	132	133	0	57	0	123	0	133
THCA	274	73	228	230	0	0	0	45	0	0
UCEC	462	425	430	451	54	266	0	359	200	239
PANCANCER	6239	5110	5246	5325	2218	2297	1055	2844	2087	2610

2012_04_12 stddata Run

April 2012

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	89	65	58	78	0	32	0	54	0	28
BRCA	859	857	833	858	529	751	0	781	408	507
CESC	110	25	68	0	0	0	0	8	0	36
COADREAD	590	590	575	584	224	83	0	255	399	224
DLBC	27	0	0	0	0	0	0	0	0	0
GBM	595	563	546	287	542	0	491	0	214	276
HNSC	294	255	165	292	0	103	0	89	0	0
KIRC	502	502	490	500	72	469	0	463	454	327
KIRP	135	84	75	117	16	14	0	16	0	0
LAML	202	200	0	192	0	179	0	187	0	199
LGG	144	140	143	0	27	0	0	30	0	0
LIHC	84	55	58	0	0	17	0	28	0	0
LNNH	2	0	0	0	0	0	0	0	0	0
LUAD	372	274	266	347	32	106	0	95	0	147
LUSC	290	272	282	282	154	220	0	202	0	178
ov	592	580	564	551	568	0	564	46	412	316
PAAD	48	0	14	30	0	0	0	0	0	0
PRAD	153	0	100	153	0	0	0	63	0	0
SKCM	253	0	219	240	0	0	0	0	0	0
STAD	162	150	132	133	0	57	0	123	0	133
THCA	274	73	228	230	0	0	0	45	0	0
UCEC	462	425	430	451	54	266	0	359	200	239
PANCANCER	6239	5110	5246	5325	2218	2297	1055	2844	2087	2610

2012_04_12 stddata Run

April 2012

+917
Methylation

New datatype column +2087 protein samples

	2012_04_12 studata Run									
Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	89	65	58	78	0	32	0	54	0	28
BRCA	859	857	833	858	529	751	0	781	408	507
CESC	110	25	68	0	0	0	0	8	0	36
COADREAD	590	590	575	584	224	83	0	255	399	224
DLBC	27	0	0	0	0	0	0	0	0	0
GBM	595	563	546	287	542	0	491	0	214	276
HNSC	294	255	165	292	0	103	0	89	0	0
KIRC	502	502	490	500	72	469	0	463	454	327
KIRP	135	84	75	117	16	14	0	16	0	0
LAML	202	200	0	192	0	179	0	187	0	199
LGG	144	140	143	0	27	0	0	30	0	0
LIHC	84	55	58	0	0	17	0	28	0	0
LNNH	2	0	0	0	0	0	0	0	0	0
LUAD	372	274	266	347	32	106	0	95	0	147
LUSC	290	272	282	282	154	220	0	202	0	178
OV	592	580	564	551	568	0	564	46	412	316
PAAD	48	0	14	30	0	0	0	0	0	0
PRAD	153	0	100	153	0	0	0	63	0	0
SKCM	253	0	219	240	0	0	0	0	0	0
STAD	162	150	132	133	0	57	0	123	0	133
THCA	274	73	228	230	0	0	0	45	0	0
UCEC	462	425	430	451	54	266	0	359	200	239
PANCANCER	6239	5110	5246	5325	2218	2297	1055	2844	2087	2610

2012_04_12 stddata Run

April 2012

+917
Methylation

II. So Firehose Automatically Generates

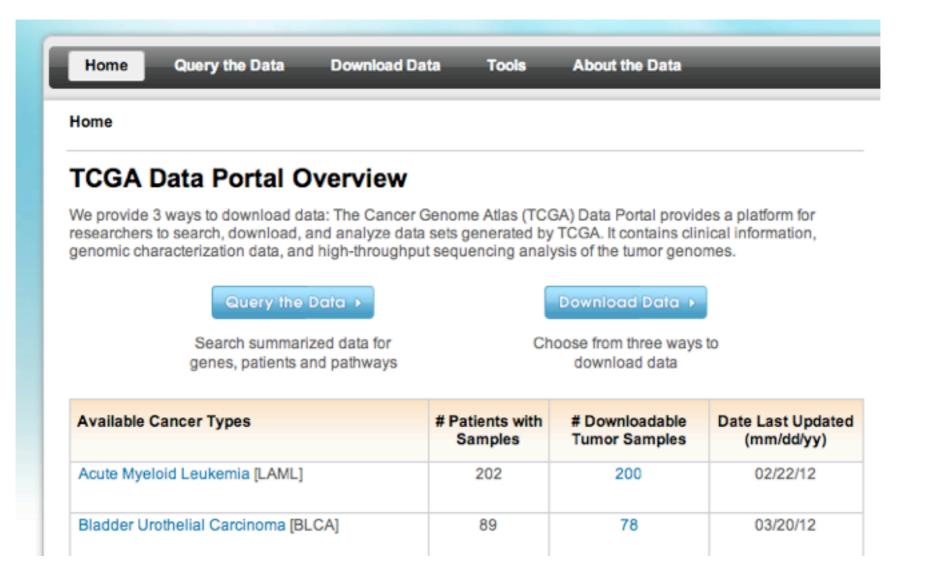
2

Regular package of standard analyses results (~monthly) *For vetted algorithms: GISTIC, MutSig, CNMF, ...* From version-stamped, standardized datasets

Generated at Broad, precursor to automated analyses

II. So Firehose Automatically Generates

2


Regular package of standard analyses results (~monthly)⁷ *For vetted algorithms: GISTIC, MutSig, CNMF, ...* From version-stamped, standardized datasets

Generated at Broad, precursor to automated analyses

★ Companioned with biologist-friendly reports

Analyses Pipelines:26 x 23 tumor sets / month = 598Standardized Datasets:273 platforms (in 23 tumorsets) x 2/month = 546

But why Firehose ...

... when TCGA data portal already exists?

No aggregate versioning How to use portal data directly in my research? Are they homogeneous? Or systematically prepared? To be ready to load in my R or MatLab script? No aggregate versioning How to use portal data directly in my research? Are they homogeneous? Or systematically prepared? To be ready to load in my R or MatLab script? No aggregate versioning How to use portal data directly in my research? Are they homogeneous? Or systematically prepared? To be ready to load in my R or MatLab script?

... and does not generate analyses at all

What if I just want to view OV Gistic (CN) peaks? Or peek at an expression or methylation cluster? Spend weeks obtaining protected data credentials

Or becoming a TCGA data guru

And still more time, mastering the analytics

Spend weeks obtaining protected data credentials

Or becoming a TCGA data guru

And still more time, mastering the analytics

AGAIN: complexity & volume preclude

this approach for many individuals

III. Ok, where do I start?

http://gdac.broadinstitute.org

III. Ok, where do I start?

http://gdac.broadinstitute.org

2012_03_21 stddata Run

ReleaseNotes	#Datasets	% Processed	Download
BLCA	8	100%	Open Protected
BRCA	16	100%	Open Protected
CESC	7	100%	Open Protected
COADREAD	14	100%	Open Protected
GBM	21	100%	Open Protected
HNSC	12	100%	Open Protected
KIRC	16	100%	Open Protected
KIRP	12	100%	Open Protected
LAML	7	100%	Open Protected
LGG	8	100%	Open Protected
LIHC	8	<u>100%</u>	Open Protected
LUAD	16	100%	Open Protected
LUSC	25	100%	Open Protected
<u>ov</u>	23	100%	Open Protected
PAAD	3	100%	Open Protected
PRAD	5	100%	Open Protected
SKCM	1	100%	Open Protected
STAD	14	100%	Open Protected
THCA	7	<u>100%</u>	Open Protected
UCEC	16	100%	Open Protected
PANCANCER	34	85%	Open Protected

2012_03_21 analyses Run

AnalysisReport	# Pipelines	% Successful	Download
BRCA	23	100%	Open Protected
COADREAD	23	100%	Open Protected
GBM	21	100%	Open Protected
LGG	14	100%	Open Protected
LUSC	23	100%	Open Protected
OV	24	100%	Open Protected
KIRC	22	96%	Open Protected
LUAD	22	96%	Open Protected
UCEC	22	96%	Open Protected
STAD	14	<u>93%</u>	Open Protected
KIRP	16	89%	Open Protected
PRAD	7	88%	Open Protected
THCA	7	88%	Open Protected
LAML	11	85%	Open Protected
BLCA	7	78%	Open Protected
HNSC	7	78%	Open Protected
LIHC	7	78%	Open Protected
CESC	6	60%	Open Protected
PAAD	3	60%	Open Protected
PANCANCER	11	58%	Open Protected

Data Dashboard Analysis Dashboard

The Broad GDAC standardized data packages represent a frozen snapshot of all TCGA analysis data at a given time:

- Cast in a form amenable to immediate algorithmic analysis (no additional data preparation required)
- Which provides a consistent point of reference for analysis and citation by marker papers and users of TCGA data
- Towards a formal definition of what constitutes a given tumor dataset
- While minimizing redundant effort across centers and groups to download & prepare data for further analysis
- And enhancing provenance and reproducibility

ReleaseNotes	# Datasets	% Processed	Download
BLCA	8	100%	Open Protected
BRCA	16	<u>100%</u>	Open Protected
CESC	7	100%	Open Protected
COADREAD	14	100%	Open Protected
GBM	21	<u>100%</u>	Open Protected
HNSC	12	100%	Open Protected
KIRC	16	<u>100%</u>	Open Protected
KIRP	12	<u>100%</u>	Open Protected
LAML	7	<u>100%</u>	Open Protected
LGG	8	100%	Open Protected
LIHC	8	<u>100%</u>	Open Protected
LUAD	16	100%	Open Protected
LUSC	25	<u>100%</u>	Open Protected
<u>ov</u>	23	<u>100%</u>	Open Protected
PAAD	3	<u>100%</u>	Open Protected
PRAD	5	100%	Open Protected
SKCM	1	100%	Open Protected
STAD	14	100%	Open Protected
THCA	7	<u>100%</u>	Open Protected
UCEC	16	<u>100%</u>	Open Protected
PANCANCER	34	<u>85%</u>	Open Protected

2012_03_21 stddata Run

Standardized Data Dashboard

The Broad GDAC standardized data packages represent a frozen snapshot of all TCGA analysis data at a given time:

- Cast in a form amenable to immediate algorithmic analysis (no additional data preparation required)
- Which provides a consistent point of reference for analysis and <u>citation by marker papers and users</u> of TCGA data
- Towards a formal definition of what constitutes a given tumor dataset
- While minimizing redundant effort across centers and groups to download & prepare data for further analysis
- And enhancing provenance and reproducibility

ReleaseNotes	# Datasets	% Processed	Download
BLCA	8	100%	Open Protected
BRCA	16	<u>100%</u>	Open Protected
CESC	7	100%	Open Protected
COADREAD	14	100%	Open Protected
GBM	21	100%	Open Protected
HNSC	12	100%	Open Protected
KIRC	16	<u>100%</u>	Open Protected
KIRP	12	<u>100%</u>	Open Protected
LAML	7	<u>100%</u>	Open Protected
LGG	8	<u>100%</u>	Open Protected
LIHC	8	<u>100%</u>	Open Protected
LUAD	16	100%	Open Protected
LUSC	25	<u>100%</u>	Open Protected
<u>ov</u>	23	<u>100%</u>	Open Protected
PAAD	3	<u>100%</u>	Open Protected
PRAD	5	<u>100%</u>	Open Protected
SKCM	1	<u>100%</u>	Open Protected
STAD	14	100%	Open Protected
THCA	7	100%	Open Protected
UCEC	16	100%	Open Protected
PANCANCER	34	85%	Open Protected

2012_03_21 stddata Run

<u>Versioned</u>

Helps BABEL problem

promoting agreement across centers on sample counts

Great starting point for aggregated TCGA data

Fine, but where are those easy analytics?

GISTIC copynumber amp/del peaks?

Or methylation/expression clusters?

Or mutation significance tables?

2012_03_21 analyses Run

2

Tables of Ingested Data: HTML PNG TSV

AnalysisReport	# Pipelines	% Successful	Download
BRCA	23	<u>100%</u>	Open Protected
COADREAD	23	<u>100%</u>	Open Protected
GBM	21	<u>100%</u>	Open Protected
LGG	14	<u>100%</u>	Open Protected
LUSC	23	<u>100%</u>	Open Protected
<u>OV</u>	24	<u>100%</u>	Open Protected
KIRC	22	96%	Open Protected
LUAD	22	<u>96%</u>	Open Protected
UCEC	22	96%	Open Protected
<u>STAD</u>	14	<u>93%</u>	Open Protected
KIRP	16	89%	Open Protected
PRAD	7	88%	Open Protected
THCA	7	88%	Open Protected
LAML	11	<u>85%</u>	Open Protected
BLCA	7	78%	Open Protected
HNSC	7	<u>78%</u>	Open Protected
LIHC	7	78%	Open Protected
CESC	6	60%	Open Protected
PAAD	3	60%	Open Protected
PANCANCER	11	<u>58%</u>	Open Protected

2

Analyses Dashboard

2012_03_21 analyses Run

Tables of Ingested Data: HTML PNG TSV

AnalysisReport	# Pipelines	% Successful	Download
BRCA	23	100%	Open Protected
COADREAD	23	<u>100%</u>	Open Protected
GBM	21	<u>100%</u>	Open Protected
LGG	14	<u>100%</u>	Open Protected
LUSC	23	<u>100%</u>	Open Protected
<u>OV</u>	24	<u>100%</u>	Open Protected
KIRC	22	96%	Open Protected
LUAD	22	<u>96%</u>	Open Protected
UCEC	22	96%	Open Protected
<u>STAD</u>	14	<u>93%</u>	Open Protected
KIRP	16	89%	Open Protected
PRAD	7	88%	Open Protected
THCA	7	88%	Open Protected
LAML	11	85%	Open Protected
BLCA	7	78%	Open Protected
HNSC	7	78%	Open Protected
LIHC	7	78%	Open Protected
CESC	6	60%	Open Protected
PAAD	3	60%	Open Protected
PANCANCER	11	<u>58%</u>	Open Protected

20+ analyses per 20+ tumorsets

Tumor	BCR	Clinical	CN	Methylation	mRNA	mRNAseq	miR	miRseq	MAF
BLCA	89	58	35	38	0	0	0	54	0
BRCA	864	844	781	808	529	751	0	781	507
CESC	99	12	36	0	0	0	0	8	0
COADREAD	591	586	565	236	224	83	0	255	224
DLBC	10	0	0	0	0	0	0	0	0
GBM	596	561	537	287	542	0	491	0	276
HNSC	294	206	165	0	0	13	0	89	0
KIRC	502	502	489	391	72	469	0	463	327
KIRP	129	84	43	36	16	14	0	16	0
LAML	202	200	0	192	0	179	0	187	199
LGG	119	103	80	0	27	0	0	30	0
LIHC	84	47	53	0	0	17	0	28	0
LNNH	2	0	0	0	0	0	0	0	0
LUAD	353	269	205	127	32	0	0	95	147
LUSC	283	266	211	133	154	220	0	202	178
ov	592	580	547	551	568	0	564	-46	316
PAAD	38	0	14	0	0	0	0	0	0
PRAD	153	0	82	0	0	0	0	63	0
SKCM	240	0	0	0	0	0	0	0	0
STAD	149	148	134	118	0	58	0	125	0
THCA	251	54	85	0	0	0	0	45	0
UCEC	462	392	363	373	54	266	0	359	239
Totals	6102	4912	4425	3290	2218	2070	1055	2846	2413

	Pipeline	Not Ready	Failed	Succeed
1	Aggregate_Clusters	0	0	1
2	Clinical_Aggregate_Tier1	0	0	1
3	Clinical_Pick_Tier1	0	0	1
4	CopyNumber_GeneBySample	0	0	1
5	CopyNumber_Gistic2	0	0	1
6	CopyNumber_Preprocess	0	0	1
7	Correlate_Clinical_vs_miR	0	0	1
8	Correlate_Clinical_vs_Molecular_Signatures	0	0	1
9	Correlate_Clinical_vs_mRNA	0	0	1
10	Correlate_Clinical_vs_Mutation	0	0	1
11	Correlate_CopyNumber_vs_miR	0	0	1
12	Correlate_CopyNumber_vs_mRNA	0	0	1
13	Correlate_GenomicEvents	0	0	1
14	Correlate_Methylation_vs_mRNA	0	0	1
15	miR_Clustering_CNMF	0	0	1
16	miR_Clustering_Consensus	0	0	1
17	miR_FindDirectTargets	0	0	1
18	mRNA_Clustering_CNMF	0	0	1
19	mRNA_Clustering_Consensus	0	0	1
20	mRNA_Preprocess_Median	0	0	1
21	Mutation_Assessor	0	0	1
22	Mutation_Significance	0	0	1
23	Pathway_FindEnrichedGenes	0	0	1
24	Pathway_Paradigm	0	0	1
	Total	0	0	24

Dashboards Updated

2012_02_17 analyses Run

Tables of Ingested Data: HTML PNG TSV

AnalysisReport	# Pipelines	% Successful	Download
OV	24	100%	Archives
BRCA	23	100%	Archives
COADREAD	23	100%	Archives
LUSC	23	100%	Archives
GBM	21	100%	Archives
LGG	14	100%	Archives
KIRC	22	96%	Archives
UCEC	22	96%	Archives
LUAD	19	95%	Archives
KIRP	16	89%	Archives
BLCA	7	88%	Archives
PRAD	7	88%	Archives
THCA	7	88%	Archives
LAML	11	85%	Archives
STAD	11	85%	Archives
HNSC	7	78%	Archives
LIHC	7	78%	Archives
PAAD	3	60%	Archives
CESC	4	50%	Archives
DLBC	0	0%	
LNNH	0	0%	
SKCM	0	0%	

Dashboards Updated

2012_02_17 analyses Run Tables of Ingested Data: HTM AnalysisReport % Successful Download 24 100% <u>vo</u> Archives BRCA 23 100% Archives COADREAD 23 100% Archives 23 100% LUSC Archives 21 GBM 100% Archives 14 100% LGG Archives 22 KIRC 96% Archives UCEC 22 Archives 96% LUAD 19 96% Archives KIRP 16 89% Archives BLCA 7 88% Archives 7 PRAD 88% Archives 7 THCA 88% Archives LAML 11 85% Archives STAD 11 85% Archives HNSC 7 Archives 78% LIHC 7 78% Archives PAAD 60% 3 Archives CESC 4 50% Archives DLBC 0 0% LNNH 0 0% SKCM 0 0%

UP < > EXPAND ALL COLLAPSE ALL SET AUTO WIDTH PRINT

Analysis Overview for Ovarian Serous Cystadenocarcinoma

Maintained by TCGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)

Overview

Introduction

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results

- Sequence and Copy Number Analyses
 - Copy number analysis (GISTIC2)

View Report | There were 547 tumor samples used in this analysis: 29 significant arm-level results, 35 significant focal amplifications, and 46 significant focal deletions were found.

Mutation Analysis (MutSig)

View Report | Significantly mutated genes (q ≤ 0.1): 24

Clustering Analyses

Clustering of mRNA expression: consensus NMF

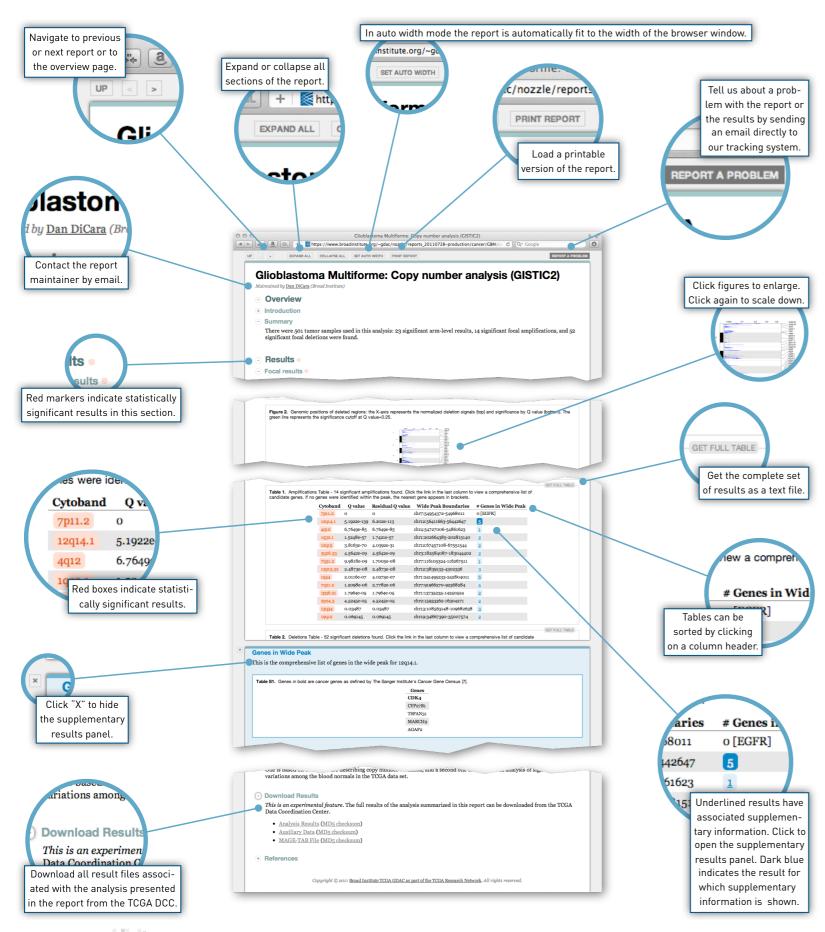
<u>View Report</u> | The most robust consensus NMF clustering of 565 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

Clustering of mRNA expression: consensus hierarchical

<u>View Report</u> | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 565 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

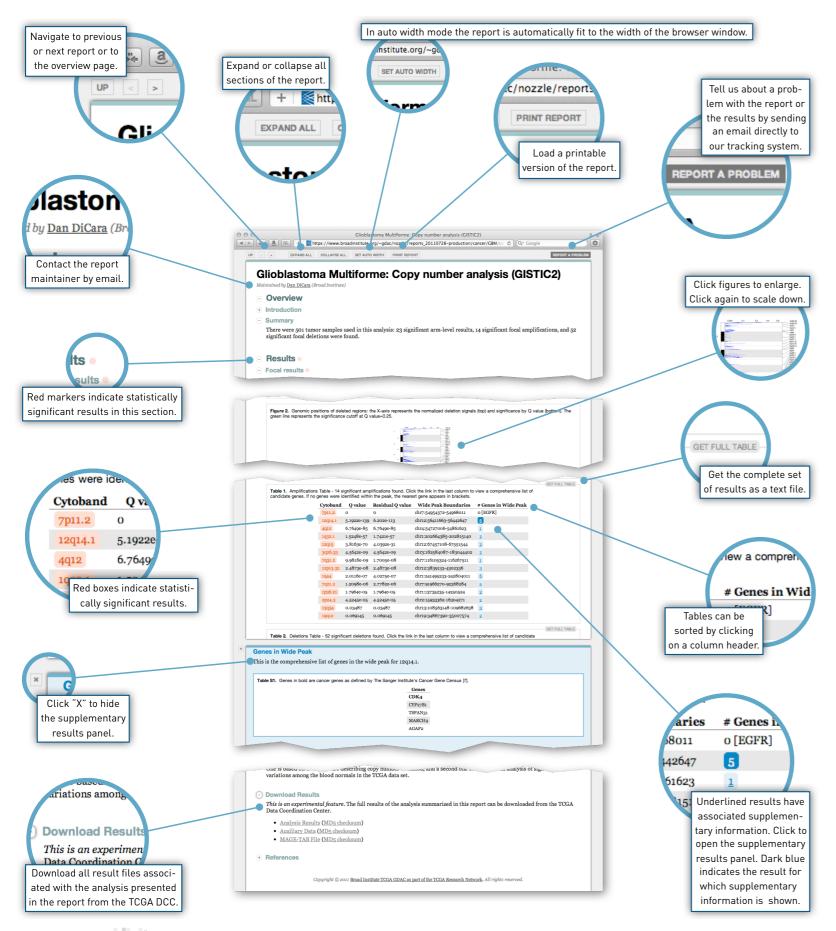
Clustering of Methylation: consensus NMF

<u>View Report</u> | The 1229 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distriution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 551 samples and 1229 genes identified 6 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.


Clustering of miR expression: consensus NMF

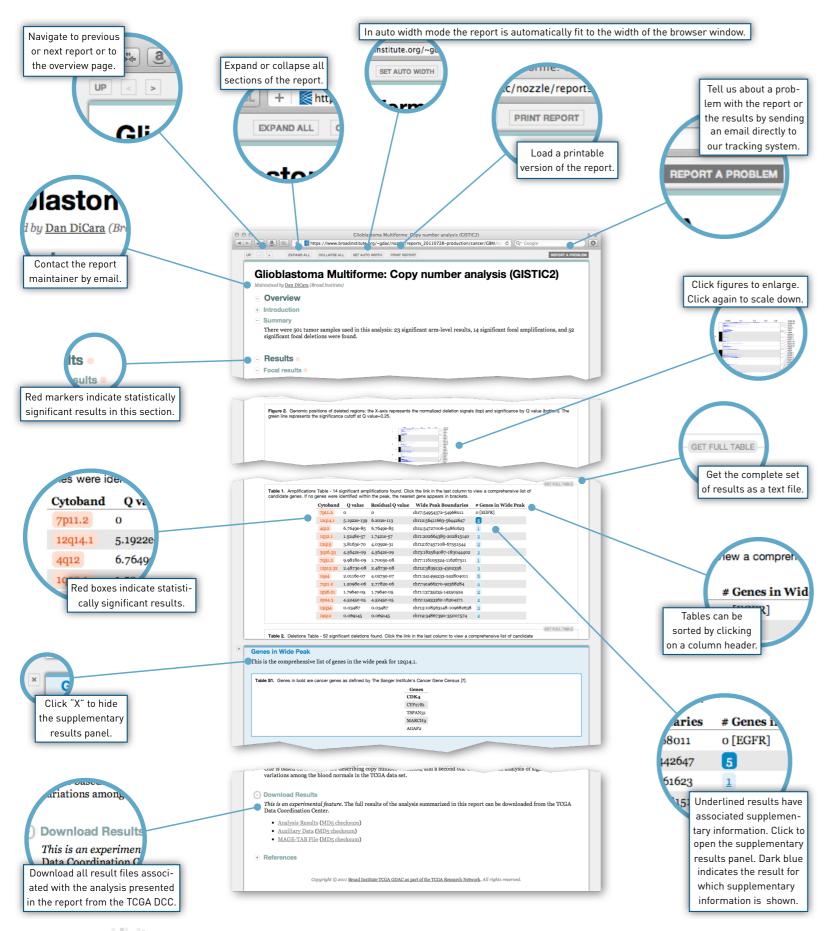
<u>View Report</u> | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 564 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Firehose Reports | At-a-Glance


→ Reports are compatible with Firefox 4+, Chrome 12+, Safari 5+, Opera 11+ and Internet Explorer 9+.

Firehose Reports | At-a-Glance

→ Reports are compatible with Firefox 4+, Chrome 12+, Safari 5+, Opera 11+ and Internet Explorer 9+.


Organized like a paper

- Overview ("Abstract")
- Results
- Methods & Data

Firehose Reports | At-a-Glance

→ Reports are compatible with Firefox 4+, Chrome 12+, Safari 5+, Opera 11+ and Internet Explorer 9+.

Organized like a paper

- Overview ("Abstract")
- Results
- Methods & Data

With Browser Convenience

- Dynamic zooming
- And navigation
- View partial or full data
- Easily printable
- •Built-in bug reporting
- No HTML coding: just R

UP		EXPAND.	ALL	NP68.	ALL	BET /	ALCED 1	HIGTH	PREM

Analysis Overview for Ovarian Serous Cystadenocarcinoma

Maintained by TCGA GDAC Tram (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)

Overview

Introduction

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results

Sequence and Copy Number Analyses

- Copy number analysis (GISTIC2)
 - Copy infinite analysis (cost i can be analysis) and the analysis: 29 significant arm-level results, 35 significant focal amplifications, and 46 significant focal deletions were found.
- Mutation Analysis (MutSig)
- View Report | Significantly mutated genes (q s 0.1): 24
- Clustering Analyses

+ Clustering of mRNA expression: consensus NMF

<u>Univ Record</u> [The most robust consensus NMF clustering of 565 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

Clustering of mRNA expression: consensus hierarchical

 $\underline{V[mv,Report]}$ | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 565 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

+ Clustering of Methylation: consensus NMF

Clustering of Methylation: consensus NMF $V_{inveReport}$ | The 1229 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distribution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 551 samples and 1229 genes identified 6 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

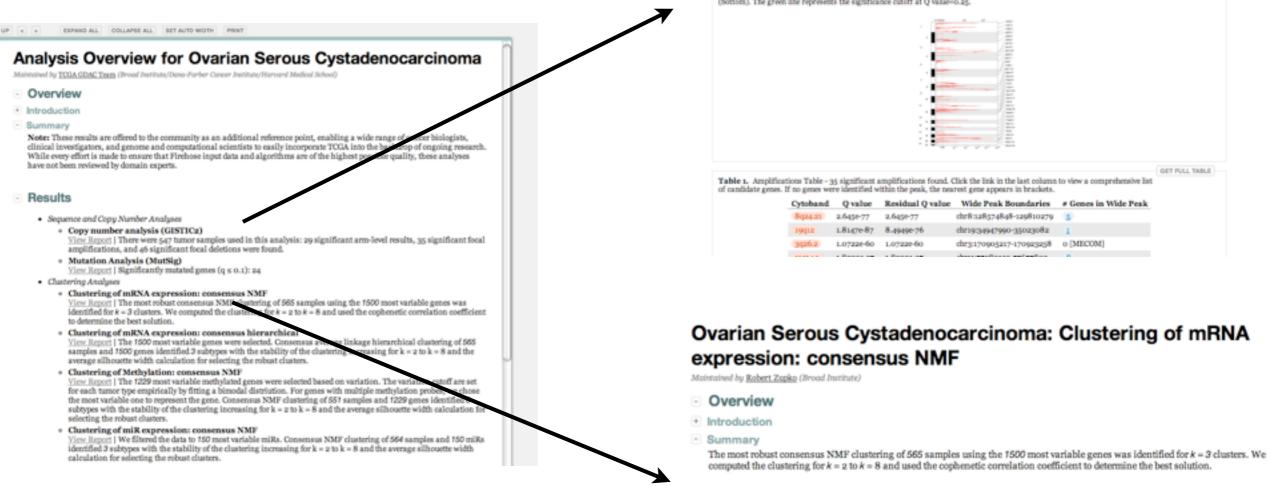
Clustering of miR expression: consensus NMF

View Report | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 564 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Ovarian Serous Cystadenocarcinoma: Copy number analysis (GISTIC2)

Maintained by Dan DiCara (Broad Institute

Overview

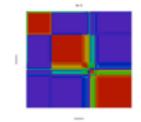

- Introduction
- Summary

There were 547 tumor samples used in this analysis: 29 significant arm-level results, 35 significant focal amplifications, and 46 significant focal deletions were found.

Results

Focal results

Figure 1. Genomic positions of amplified regions: the X-axis represents the normalized amplification signals (top) and significance by Q value (bottom). The green line represents the significance cutoff at Q value=0.25.



Point/Click from browser Directly from Broad GDAC site No passwords Linked directly to downloadable data

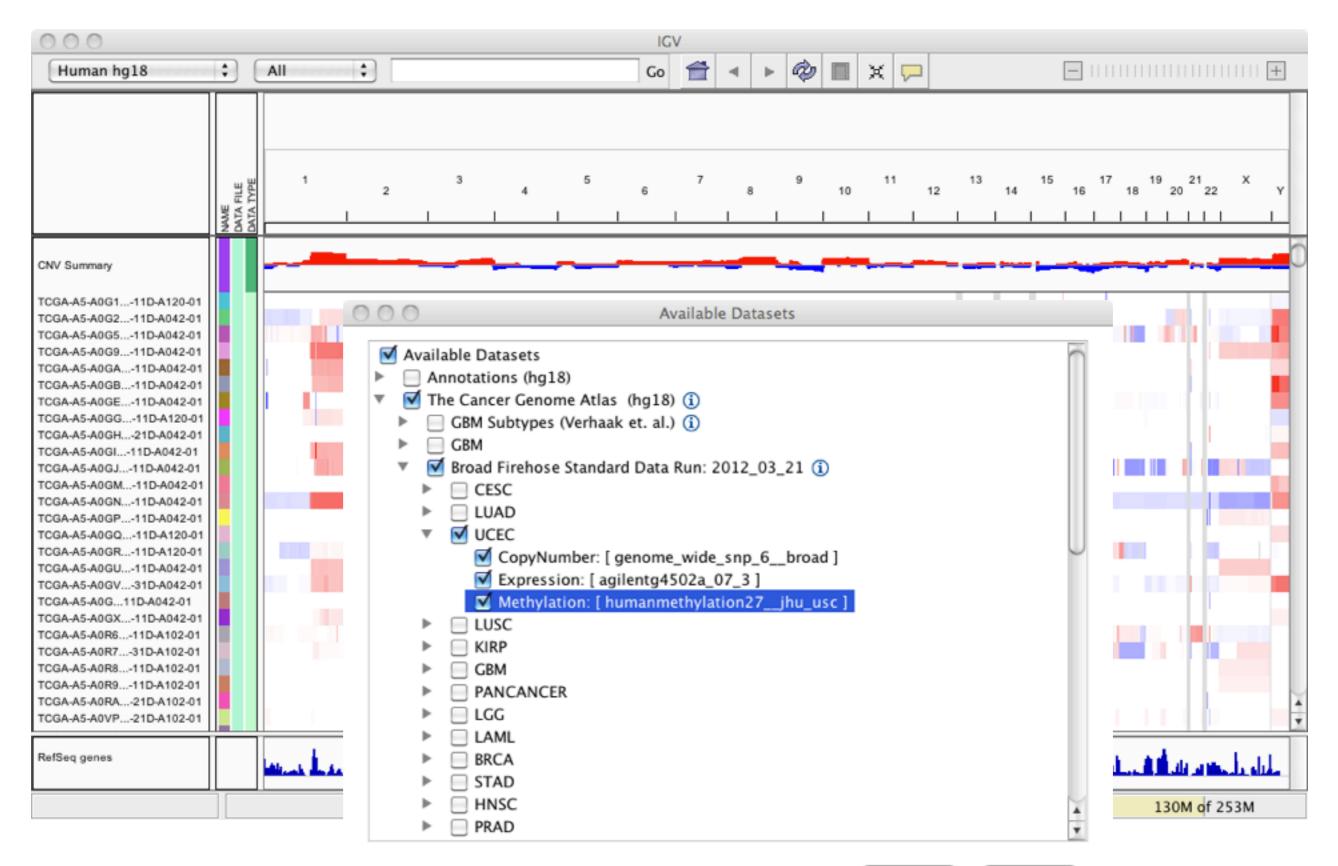
Results

- Gene expression patterns of molecular subtypes
- Consensus and correlation matrix

Figure 2. The consensus matrix after clustering shows 3 clusters with limited overlap between clusters.

GET HIGH-RES IMAGE

Offered to community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. Offered to community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research.


- Aim is to quickly enable readers
- To take pulse of pipelines for given tumor type(s)
- By just glancing at common representational figures
- Not deep head-scratching
- Or weeks of data wrangling

Offered to community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research.

- Aim is to quickly enable readers
- To take pulse of pipelines for given tumor type(s)
- By just glancing at common representational figures
- Not deep head-scratching
- Or weeks of data wrangling

VERY low hanging fruit

PRE-LOADED IN IGV, TOO

Cancel

OK

AND EASY TO FIND & DOWNLOAD

S Added by Aaron Ball, last edited by Michael Noble on Apr 21, 2012 (view change)

- AWG Reps
- <u>Contact Us</u>
- Dashboard-Analyses
- Dashboard-Stddata
- Data Usage Policy
- DCC Interactions
- FAQ
- Nozzle
- Pipeline Docs
- Presentations
- ProcessFlow
- QualityControl

Email Archive

Welcome to the online home of the <u>Broad Institute's</u> Genome Data Analysis Center (GDAC). On behalf of <u>The Cancer</u> <u>Genome Atlas (TCGA)</u>, we've designed and operate <u>scientific data</u> and <u>analysis pipelines</u> which pump terabyte-scale genomic datasets through scores of quantitative algorithms, in the hope of accelerating the understanding of cancer. See the dashboards below for details of the latest monthly runs, or <u>this presentation</u> for more background information. Note that downloading data from our site constitutes agreement to <u>this data usage policy</u>.

🕸 Tools 🗸

2012_03_21 analyses Run

2012_03_21 stddata Run

Home

ReleaseNotes	# Datasets	% Processed	Download	AnalysisReport	# Pipelines	% Successful	Download
BLCA	8	100%	Open Protected	BRCA	23	100%	Open Protect
BRCA	16	100%	Open Protected	COADREAD	23	100%	Open Protes
CESC	7	100%	Open Protected	GBM	21	100%	Open Prote
COADREAD	14	100%	Open Protected	LGG	14	100%	Open Prote
GBM	21	100%	Open Protected	LUSC	23	100%	Open Prote
HNSC	12	100%	Open Protected	QV	24	100%	Open Prote
KIRC	16	100%	Open Protected	KIRC	22	96%	Open Prote
KIRP	12	100%	Open Protected	LUAD	22	96%	Open Prote
LAML	7	100%	Open Protected	UCEC	22	96%	Open Prote
LGG	8	100%	Open Protected	STAD	14	93%	Open Prote
LIHC	8	100%	Open Protected	KIRP	16	89%	Open Prote
LUAD	16	100%	Open Protected	PRAD	7	88%	Open Prote
LUSC	25	100%	Open Protected	THCA	7	88%	Open Prote
<u>ov</u>	23	100%	Open Protected	LAML	11	85%	Open Prote
PAAD	3	100%	Open Protected	BLCA	7	78%	Open Prote
PRAD	5	100%	Open Protected	HNSC	7	78%	Open Prote
SKCM	1	100%	Open Protected	LIHC	7	78%	Open Prote
STAD	14	100%	Open Protected	CESC	6	60%	Open Prote
THCA	7	100%	Open Protected	PAAD	3	60%	Open Prote
UCEC	16	100%	Open Protected	PANCANCER	11	58%	Open Prote
PANCANCER	34	85%	Open Protected				

NEW: firehose get utility to simplify retrieval of public result archives.

AND EASY TO FIND & DOWNLOAD

firehose_get v0.3.0 (alpha)

Retrieving or utilizing TCGA results need not be difficult, especially for open-access data. To help simplify, we're currently alpha-testing the *firehose_get* retrieval script. To join our alpha testing, simply download the zip file from here, perform these 2 steps from a Unix-compatible command line

unix% unzip firehose_get.zip unix% ./firehose get

and follow the instructions shown below. Please note that downloading data from our site constitutes agreement to this data usage policy.

firehose_get : retrieve open-access results of Broad Institute TCGA GDAC runs Version: 0.3.0 alpha (Author: Michael S. Noble) Usage: firehose_get [flags] RunType Date [tumor_type, ...] Two arguments are required; the first must be one of analyses data stddata (the latter two values are equivalent), while the second must EITHER be a date (in YYYY_MM_DD form) of an existing GDAC run of the given type OR 'latest'. An optional third, fourth etc argument may be specified to prune the retrieval, given as a subset of the following case-insensitive TCGA tumor type abbreviations: BLCA BRCA CESC COADREAD DLBC GBM HNSC KIRC KIRP LAML LGG LIHC LNNH LUAD LUSC OV PAAD PRAD SKCM STAD THCA UCEC PANCANCER Flags: -e | -echo show commands that would be run, but do nothing -h | -help | --help this message -l | -log write output to log file, instead of stdout -r | -runs display list of all available Firehose runs -t | -tasks <list> further prune the set of archives retrieved, by downloading ONLY the tasks (pipelines) whose names match the given space-delimited list of

Copyright and Disclaimer

Acknowledgements

Broad Michael Noble Douglas Voet Gordon Saksena Dan DiCara Kristian Cibulskis

Juok Cho Rui Jing Michael Lawrence Lee Lichtenstein Pei Lin Spring Liu Aaron McKenna Sachet Shukla Raktim Sinha Andrey Sivachenko Carrie Sougnez Petar Stojanov Lihua Zhou Hailei Zhang Robert Zupko

Belfler-DFCI/MDACC

Yonghong Xiao Juinhua Zhang Terrence Wu

IGV & GenePattern teams @ Broad

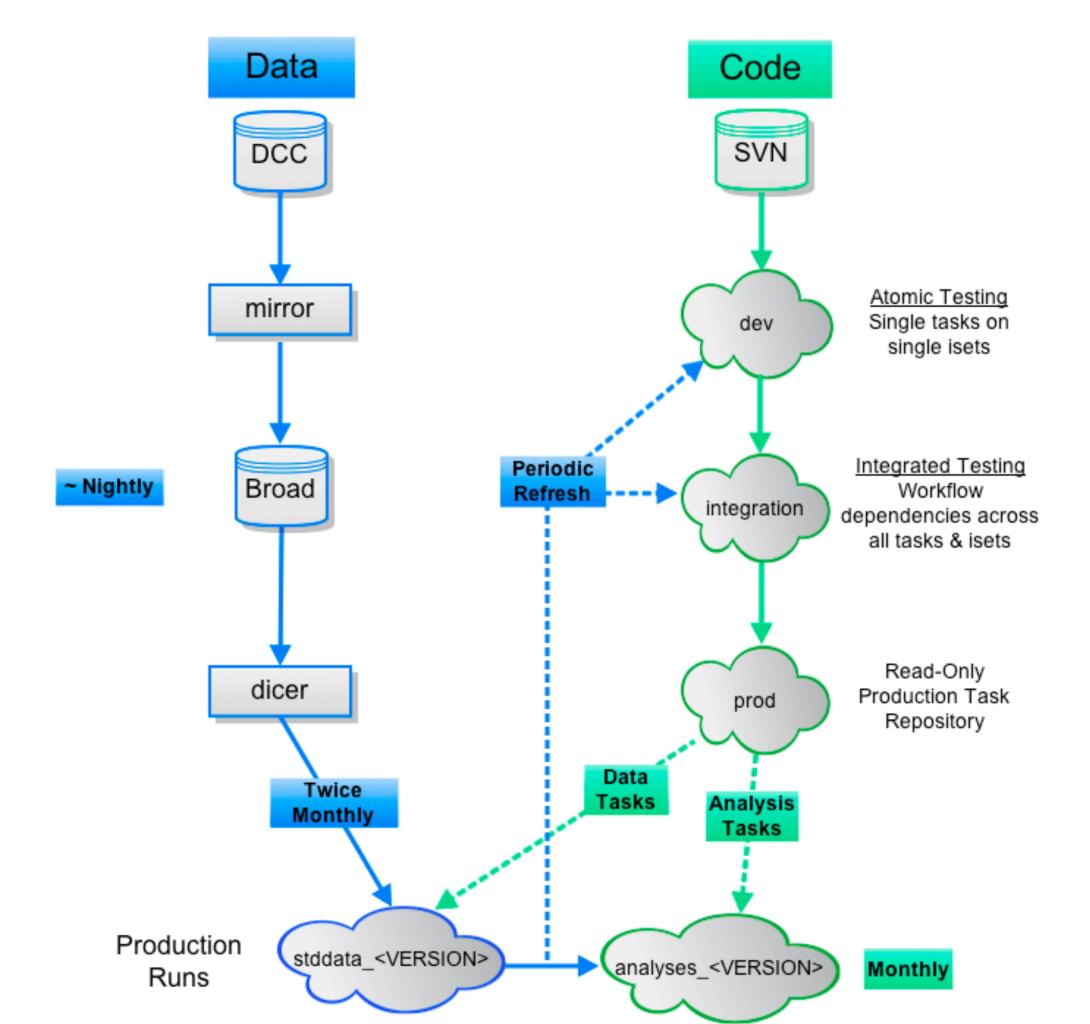
Jill Mesirov Michael Reich Peter Carr Marc-Danie Nazaire Jim Robinson Helga Thorvaldsdottir

PI: Lynda Chin, Gaddy Getz

Harvard Peter Park Nils Gehlenborg Semin Lee Richard Park

Matthew Meyerson Todd Golub Eric Lander

Making Cancer History'


Poster Contributions

- Poster : Engineering Firehose
- Poster : RNA-Seq in Firehose
- Poster : GDAC Interoperability
- Poster : Broad SNP6 Pipeline

(DiCara et al) (Zhang et al) (Cerami et al) (Saksena et al)

THANK YOU!

http://gdac.broadinstitute.org

