Progress Report:

GDAC Firehose Integration With The Genomic Data Commons

M. Noble, T. DeFreitas, D. Heiman Broad Institute of MIT & Harvard

> mnoble@broadinstitute.org 2016_07_01

Outline

- Vision for this work
- Brief review of TCGA GDAC Firehose
- GDC-based runs to date
- Closing remarks

Vision

- While bringing the past to a good resting place:
 ✓ Finalizing TCGA (i.e. AWGs)
- We are simultaneously working on the future
 - ✓ GDC integration
 - ✓ FireCloud
- We view latter as 2 thrusts of a single goal:

✓ GDAN Readiness

- ✓ If funded, we <u>will</u> be ready to go on day 1
- ✓ And provide open tools to clarify, scale & democratize
- ✓ Example: *GDCtools* GIT repo will provide:
 - ✓ Auto-generated Python bindings to GDC api
 - ✓ Simple means by which other centers can mirror GDC
 - ✓ And generate sample freeze lists (loadfiles) (common activity in AWGs)

Timeline

Original

- To be underway by Jan 2016 and "ready" by late May/June
- With 3 major deliverables:
 - Firehose capable of ingesting both legacy & new data from GDC
 - Set of open source Python bindings to the GDC API
 - Set of notes, with possibly additional software artifacts, to help other researchers and data centers adapt to the GDC

Timeline

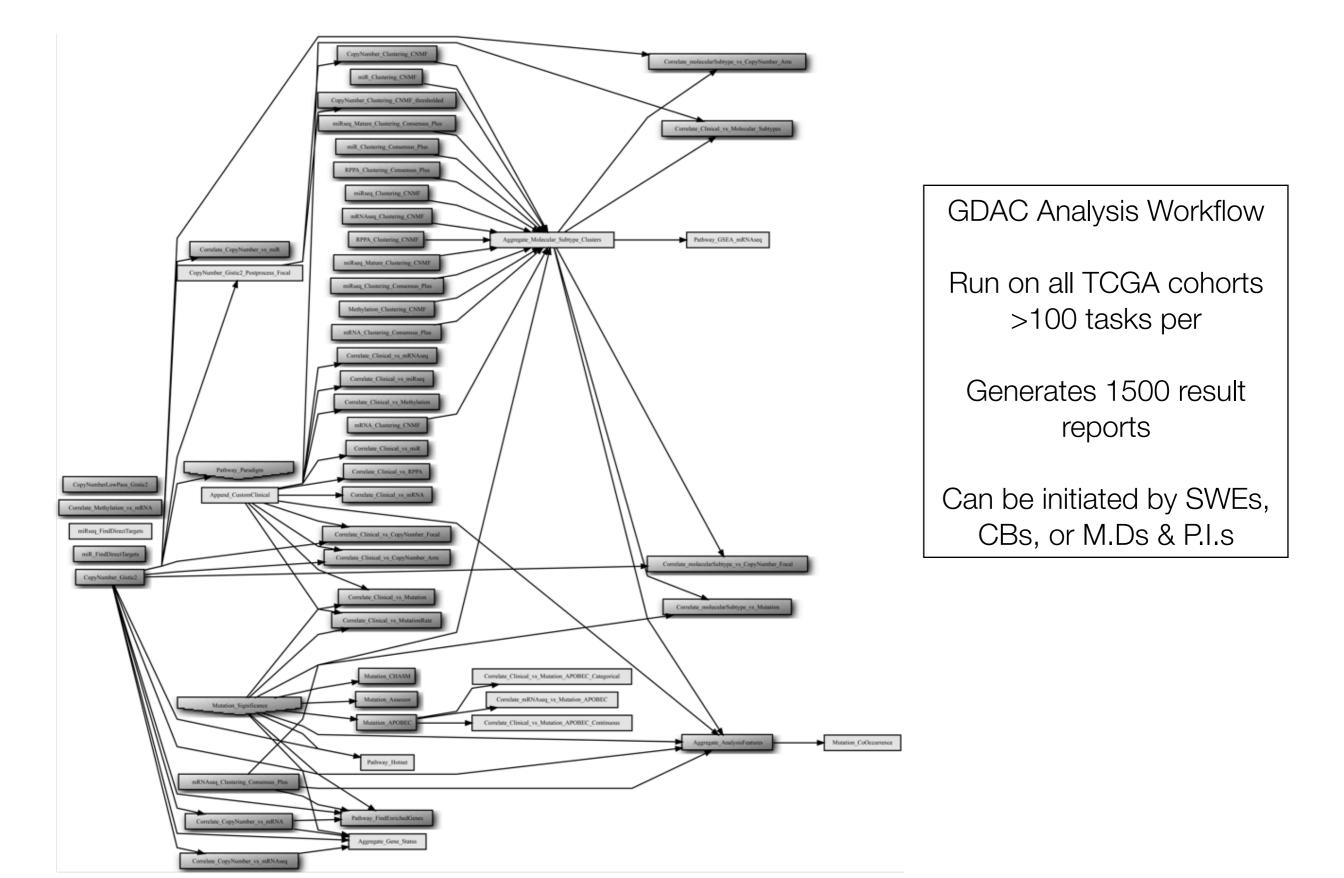
Original

- To be underway by Jan 2016 and "ready" by late May/June
- With 3 major deliverables:
 - Firehose capable of ingesting both legacy & new data from GDC
 - Set of open source Python bindings to the GDC API
 - Set of notes, with possibly additional software artifacts, to help other researchers and data centers adapt to the GDC

Reality

- Formally began April 2016
- Significant progress already on all major goals
- In light of *GDAN Readiness* vision, added 2 more goals:

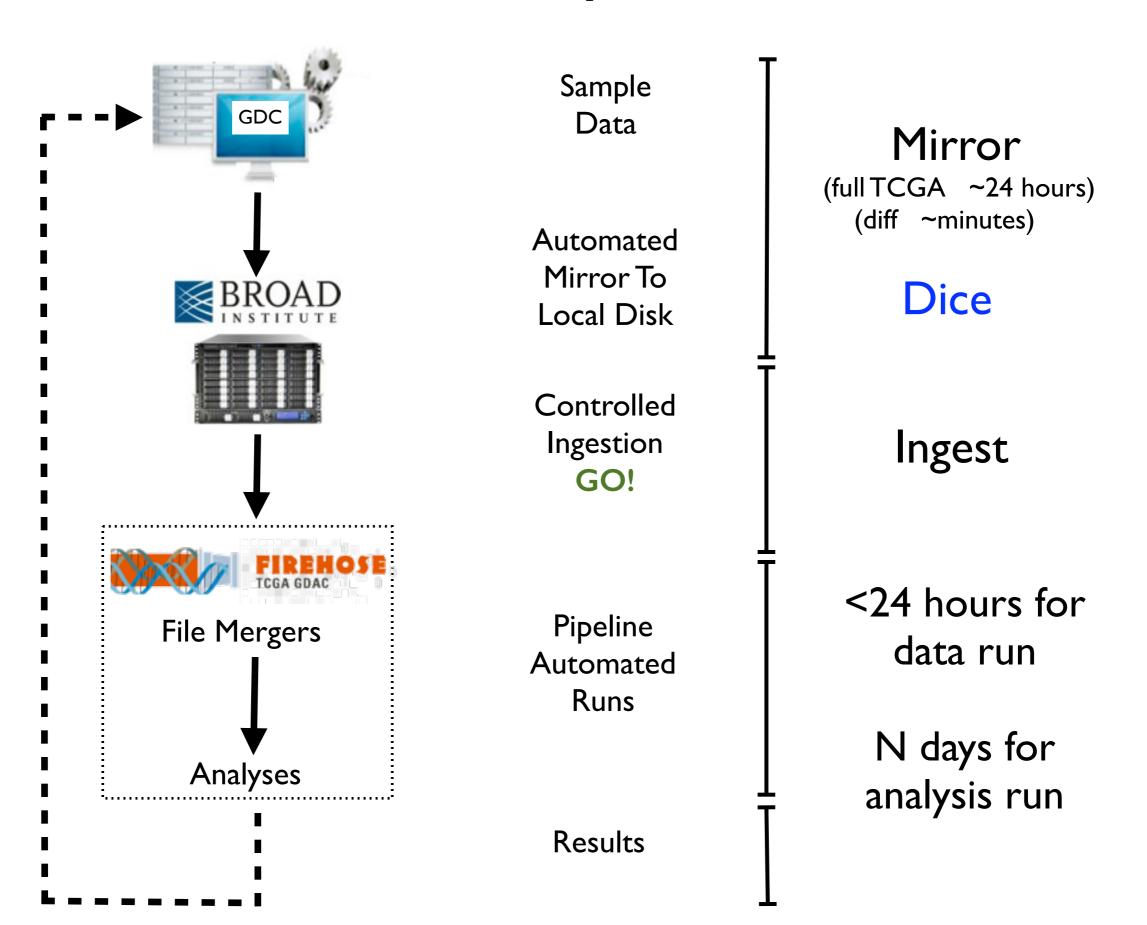
✓ Release 2 final GDC-based Firehose runs: data, analysis


- ✓ Encapsulating final snapshot of TCGA data
- ✓ Likely mix of GDC & DCC data, to fill holes (e.g. RPPA, Methylation)

Firehose Review

- Sophisticated job execution manager
- Operated through browser UI and API (even command line)
- So you don't have to manage compute farm (e.g. LSF or SGE)
- At the time, nothing else scaled to TCGA levels AND included job avoidance (*way to skip jobs already run*) AND organized data in biologically-informed data model (*pairs, sample sets, etc*) AND file-system-blind manner (*annotations*)

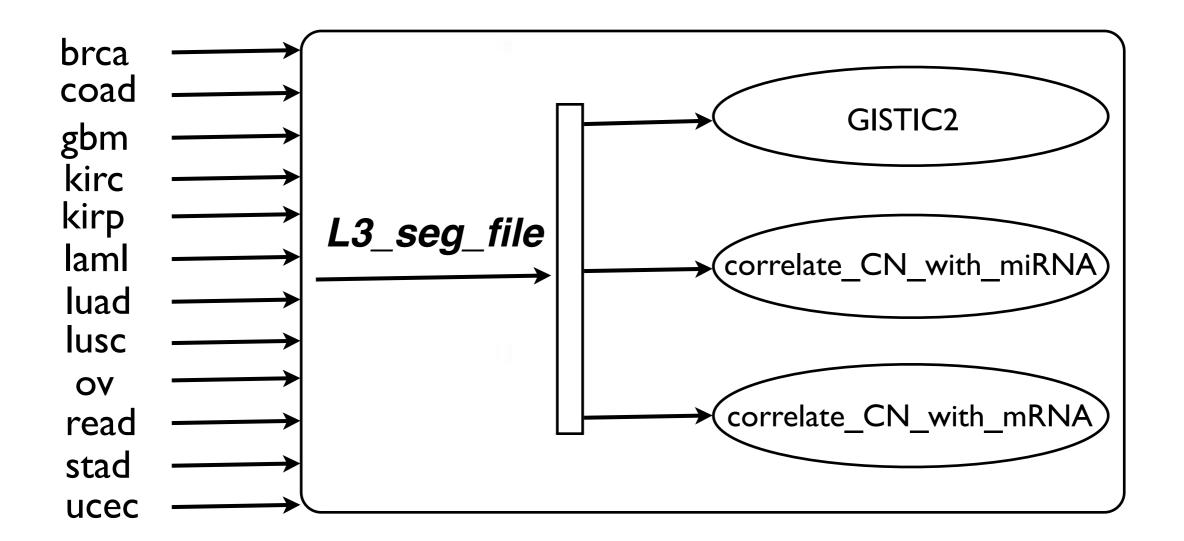
Instances for multiple projects & labs: TCGA GDAC (us), TCGA sequencing, GTEX, ICGC, Garraway, Meyerson, Wu ...


Allows HPC (compute farm) to be easily exploited by all: Technical power users (us) AND itinerant M.D.s /P.I.s

Plays several key roles

- extreme scale production pipeline
- analytic forest-clearing for researchers & MDs
- democratization for use beyond TCGA proper
- simplification for everyone
- pushing envelope for rigor @ scale, reproducibility, APIs

TCGA GDAC Pipeline Data Flow



Dicing : part of Firehose secret sauce

- Scans mirror to interpret & normalize files (e.g. in TCGA would make mage-tab from TSV)
- And generate loadfiles
- ... large tables of all sample files in cohort
- Used to fill in values of Firehose annotations
- Like mirror, dicing can be **all** or **incremental**

Annotations: more FireHose secret sauce

- Logical identifier for datum: input or output
- Abstracts file system knowledge from algorithms
- Transparent multiplexing across TCGA tumor types

By encapsulating data and algorithm parameters within abstract annotations, instead of only literal values or explicit file system references, Firehose is able to execute analyses codes in data-blind manner across a wide variety of inputs, without modification or onerous bookkeeping for end users. This has proven to be a powerful metaphor for interacting with TCGA data, for example, because once an algorithm is in Firehose it can run on either a single tumor type or all of them with equal ease.

Why talk about loadfiles?

Well, in addition to enabling Firehose

A big part of AWG analysis is establishing sample freeze lists.

And loadfiles are simply sample freeze lists by a different name.

And our *GDCtools* repo will enable this to be done easily by anyone.

GDC-based Firehose pipeline runs

3 so far, data snapshot version given in bold Harmonized data / API, not legacy

2016_05_25 1 cohort/project (TCGA-ACC) 2 available datatypes (Clinical, Copy Number)

2016_05_27 |33 cohorts (all of core TCGA cohorts) still only 2 datatypes

2016 06 29

38 cohorts: 33 core TCGA + 5 aggregates
COADREAD: COAD, READ
GBMLGG: GBM, LGG
KIPAN: KICH, KIRC, KIRP
STES: STAD, ESCA
PANGI: COAD, READ, STAD, ESCA
4 datatypes: Clinical, CN, miRSeq, mRNASeq

Summary of TCGA Tumor Data Ingested into Broad GDAC Pipeline 2016_01_28 stddata Run

Cohort	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	RPPA	MAF	rawMAF
ACC	92	92	90	0	80	0	79	0	80	46	90	0
BLCA	412	412	410	112	412	0	408	0	409	344	130	395
BRCA	1098	1097	1089	19	1097	526	1093	0	1078	887	977	0
CESC	307	307	295	50	307	0	304	0	307	173	194	0
CHOL	51	45	36	0	36	0	36	0	36	30	35	0
COAD	460	458	451	69	457	153	457	0	406	360	154	367
COADREAD	631	629	616	104	622	222	623	0	549	491	223	489
DLBC	58	48	48	0	48	0	48	0	47	33	48	0
ESCA	185	185	184	51	185	0	184	0	184	126	185	0
FPPP	38	38	0	0	0	0	0	0	23	0	0	0
GBM	613	595	577	0	420	540	160	565	0	238	290	290
GBMLGG	1129	1110	1090	52	936	567	676	565	512	668	576	806
HNSC	528	528	522	108	528	0	520	0	523	212	279	510
KICH	113	113	66	0	66	0	66	0	66	63	66	66
KIPAN	973	941	883	0	892	88	889	0	873	756	644	799
KIRC	537	537	528	0	535	72	533	0	516	478	417	451
KIRP	323	291	289	0	291	16	290	0	291	215	161	282
LAML	200	200	197	0	194	0	179	0	188	0	197	0
LGG	516	515	513	52	516	27	516	0	512	430	286	516
LIHC	377	377	370	0	377	0	371	0	372	63	198	373
LUAD	585	522	516	120	578	32	515	0	513	365	230	542
LUSC	504	504	501	0	503	154	501	0	478	328	178	0
MESO	87	87	87	0	87	0	87	0	87	63	0	0
OV	602	591	586	0	594	574	304	570	453	426	316	469
PAAD	185	185	184	0	184	0	178	0	178	123	150	184
PCPG	179	179	175	0	179	0	179	0	179	80	179	0
PRAD	499	499	492	115	498	0	497	0	494	352	332	498
READ	171	171	165	35	165	69	166	0	143	131	69	122
SARC	261	261	257	0	261	0	259	0	259	223	247	0
SKCM	470	470	469	118	470	0	469	0	448	353	343	366
STAD	443	443	442	107	443	0	415	0	436	357	289	395
STES	628	628	626	158	628	0	599	0	620	483	474	395
TGCT	150	134	150	0	150	0	150	0	150	118	149	0
THCA	503	503	499	98	503	0	501	0	502	222	402	496
THYM	124	124	123	0	124	0	120	0	124	90	123	0
UCEC	560	548	540	106	547	54	545	0	538	440	248	0
UCS	57	57	56	0	57	0	57	0	56	48	57	0
UVM	80	80	80	51	80	0	80	0	80	12	80	0
Totals	11368	11196	10987	1211	10972	2217	10267	1135	10156	7429	7099	6322

Last public runs snapshot; only 718 new data aliquots added since then; all RPPA; some clinical data likely refreshed

Summary of TCGA Tumor Data Ingested into Broad GDAC Pipeline 2016_01_28 stddata Run

Cohort	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	RPPA	MAF	rawMAF
ACC	92	92	90	0	80	0	79	0	80	46	90	0
BLCA	412	412	410	112	412	0	408	0	409	344	130	395
BRCA	1098	1097	1089	19	1097	526	1093	0	1078	887	977	0
CESC	307	307	295	50	307	0	304	0	307	173	194	0
CHOL	51	45	36	0	36	0	36	0	36	30	35	0
COAD	460	458	451	69	457	153	457	0	406	360	154	367
COADREAD	631	629	616	104	622	222	623	0	549	491	223	489
DLBC	58	48	48	0	48	0	48	0	47	33	48	0
ESCA	185	185	184	51	185	0	184	0	184	126	185	0
FPPP	38	38	0	0	0	0	0	0	23	0	0	0
GBM	613	595	577	0	420	540	160	565	0	238	290	290
GBMLGG	1129	1110	1090	52	936	567	676	565	512	668	576	806
HNSC	528	528	522	108	528	0	520	0	523	212	279	510
KICH	113	113	66	0	66	0	66	0	66	63	66	66
KIPAN	973	941	883	0	892	88	889	0	873	756	644	799
KIRC	537	537	528	0	535	72	533	0	516	478	417	451
KIRP	323	291	289	0	291	16	290	0	291	215	161	282
LAML	200	200	197	0	194	0	179	0	188	0	197	0
LGG	516	515	513	52	516	27	516	0	512	430	286	516
LIHC	377	377	370	0	377	0	371	0	372	63	198	373
LUAD	585	522	516	120	578	32	515	0	513	365	230	542
LUSC	504	504	501	0	503	154	501	0	478	328	178	0
MESO	87	87	87	0	87	0	87	0	87	63	0	0
OV	602	591	586	0	594	574	304	570	453	426	316	469
PAAD	185	185	184	0	184	0	178	0	178	123	150	184
PCPG	179	179	175	0	179	0	179	0	179	80	179	0
PRAD	499	499	492	115	498	0	497	0	494	352	332	498
READ	171	171	165	35	165	69	166	0	143	131	69	122
SARC	261	261	257	0	261	0	259	0	259	223	247	0
SKCM	470	470	469	118	470	0	469	0	448	353	343	366
STAD	443	443	442	107	443	0	415	0	436	357	289	395
STES	628	628	626	158	628	0	599	0	620	483	474	395
TGCT	150	134	150	0	150	0	150	0	150	118	149	0
THCA	503	503	499	98	503	0	501	0	502	222	402	496
THYM	124	124	123	0	124	0	120	0	124	90	123	0
UCEC	560	548	540	106	547	54	545	0	538	440	248	0
UCS	57	57	56	0	57	0	57	0	56	48	57	0
UVM	80	80	80	51	80	0	80	0	80	12	80	0
Totals	11368	11196	10987	1211	10972	2217	10267	1135	10156	7429	7099	6322

Last public runs snapshot; only 718 new data aliquots added since then; all RPPA; some clinical data likely refreshed

Summary of TCGA Tumor Data Ingested into Broad GDAC Pipeline 2016_01_28 stddata Run

What we have from GDC; sample counts between DCC and GDC mirrors are not exact; more forensics are needed

Cohort	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	RPPA	MAF	rawMAF
ACC	92	92	90	0	80	0	79	0	80	46	90	0
BLCA	412	412	410	112	412	0	408	0	409	344	130	395
BRCA	1098	1097	1089	19	1097	526	1093	0	1078	887	977	0
CESC	307	307	295	50	307	0	304	0	307	173	194	0
CHOL	51	45	36	0	36	0	36	0	36	30	35	0
COAD	460	458	451	69	457	153	457	0	406	360	154	367
COADREAD	631	629	616	104	622	222	623	0	549	491	223	489
DLBC	58	48	48	0	48	0	48	0	47	33	48	0
ESCA	185	185	184	51	185	0	184	0	184	126	185	0
FPPP	38	38	0	0	0	0	0	0	23	0	0	0
GBM	613	595	577	0	420	540	160	565	0	238	290	290
GBMLGG	1129	1110	1090	52	936	567	676	565	512	668	576	806
HNSC	528	528	522	108	528	0	520	0	523	212	279	510
KICH	113	113	66	0	66	0	66	0	66	63	66	66
KIPAN	973	941	883	0	892	88	889	0	873	756	644	799
KIRC	537	537	528	0	535	72	533	0	516	478	417	451
KIRP	323	291	289	0	291	16	290	0	291	215	161	282
LAML	200	200	197	0	194	0	179	0	188	0	197	0
LGG	516	515	513	52	516	27	516	0	512	430	286	516
LIHC	377	377	370	0	377	0	371	0	372	63	198	373
LUAD	585	522	516	120	578	32	515	0	513	365	230	542
LUSC	504	504	501	0	503	154	501	0	478	328	178	0
MESO	87	87	87	0	87	0	87	0	87	63	0	0
OV	602	591	586	0	594	574	304	570	453	426	316	469
PAAD	185	185	184	0	184	0	178	0	178	123	150	184
PCPG	179	179	175	0	179	0	179	0	179	80	179	0
PRAD	499	499	492	115	498	0	497	0	494	352	332	498
READ	171	171	165	35	165	69	166	0	143	131	69	122
SARC	261	261	257	0	261	0	259	0	259	223	247	0
SKCM	470	470	469	118	470	0	469	0	448	353	343	366
STAD	443	443	442	107	443	0	415	0	436	357	289	395
STES	628	628	626	158	628	0	599	0	620	483	474	395
TGCT	150	134	150	0	150	0	150	0	150	118	149	0
THCA	503	503	499	98	503	0	501	0	502	222	402	496
THYM	124	124	123	0	124	0	120	0	124	90	123	0
UCEC	560	548	540	106	547	54	545	0	538	440	248	0
UCS	57	57	56	0	57	0	57	0	56	48	57	0
UVM	80	80	80	51	80	0	80	0	80	12	80	0
Totals	11368	11196	10987	1211	10972	2217	10267	1135	10156	7429	7099	6322

Only data runs so far

Mirror all of TCGA data from GDC Dice / generate loadfiles

Merge N samples into 1 bolus (necessary for downstream integrative analysis)

Generate output data archives *Internal reports & dashboards*

2016_05_27 stddata Run

Tables of Ingested Data: HTML PNG TSV RunMap: HTML TSV

DiseaseType	# Datasets	% Processed	Download
ACC	12	100%	Not Available Yet
BLCA	14	100%	Not Available Yet
BRCA	14	100%	Not Available Yet
CESC	4	10 %	Not Available Yet
CHOL	12	10 %	Not Available Yet
COAD	4	100 %	Not Available Yet
DLBC	12	100%	Not Available Yet
ESCA	4	100 %	Not Available Yet
GBM	14	100 6	Not Available Yet
HNSC	4	100%	Not Available Yet
KICH	12	1009	Not Available Yet
KIRC	14	1009	Not Available Yet
KIRP	12	100%	Not Available Yet
LAML	10	100%	Not Available Yet
LGG	14	100%	Not Available Yet
LIHC	14	100%	Not Available Yet
LUAD	14	100%	Not Available Yet
LUSC	12	100%	Not Available Yet
MESO	12	100%	Not Available Yet
OV	14	100%	Not Available Yet
PAAD	4	100%	Not Available Yet
PCPG	16	100%	Not Available Yet
PRAD	14	100%	Not Available Yet
READ	4	100%	Not Available Yet
SARC	16	100%	Not Available Yet
SKCM	14	100%	Not Available Yet
STAD	4	100%	Not Available Yet
TGCT	12	100%	Not Available Yet
THCA	14	100%	Not Available Yet
THYM	14	100%	Not Available Yet
UCEC	4	100%	Not Available Yet
UCS	4	100%	Not Available Yet
UVM	10	100%	Not Available Yet

This table generated on Fri Jul 1 11:14:21 EDT 2016

Only data runs so far

Mirror all of TCGA data from GDC Dice / generate loadfiles

Merge N samples into 1 bolus (necessary for downstream integrative analysis)

Generate output data archives *Internal reports & dashboards*

Broad GDAC Standard Data Status stddata_2016_05_27 Run for Tumor Type: BRCA

Note that the links below require Broad internal Firehose login credentials.

	Pipeline Dataset	Not Available	Available	InProcess	Successful	Unsuccessful
1	Clinical Pick Tier1	0	0	0	1	0
2	CreateLoadfile exon huex 1 0 st v2 lbl gov Level 3 quantile normalization gene data NB	1	0	0	0	0
3	CreateLoadfile exon huex 1 0 st v2 lbl gov Level 3 quantile normalization gene data NT	1	0	0	0	0
- 4	CreateLoadfile paradigm mRNAseq exp RPKM log2 NB	1	0	0	0	0
5	CreateLoadfile paradigm mRNAseq exp RPKM log2 NT	1	0	0	0	0
6	CreateLoadfile paradigm mRNAseq exp RSEM log2 NB	1	0	0	0	0
7	CreateLoadfile paradigm mRNAseq exp RSEM log2 NT	1	0	0	0	0
8	CreateLoadfile transcriptome agilentg4502a 07 3 unc edu Level 3 unc lowess normalization gene level data NB	1	0	0	0	0
9	CreateLoadfile transcriptome agilentg4502a 07 3 unc edu Level 3 unc lowess normalization gene level data NT	1	0	0	0	0
10	CreateLoadfile transcriptome ht hg u133a broad mit edu Level 3 gene rma data NB	1	0	0	0	0
11	CreateLoadfile transcriptome ht hg u133a broad mit edu Level 3 gene rma data NT	1	0	0	0	0
12	Merge Clinical	0	0	0	1	0
13	Merge cna cgh 1x1m g4447a mskcc org Level 3 segmentation data computation seg	1	0	0	0	0

Full Sample Reports Available ~ 1 week

Uterine Carcinosarcoma (UCS) Samples Report

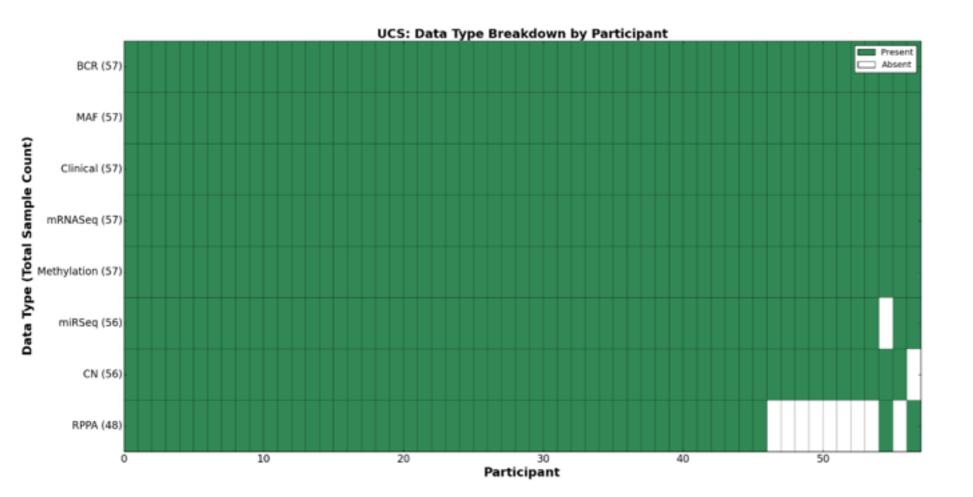
2016_01_28 Data Snapshot

- Overview

- + Introduction
- Summary

There were o redactions, o replicate aliquots, o blacklisted aliquots, and o FFPE aliquots. The table below represents the sample counts for those samples that were ingested into firehose after filtering out redactions, replicates, and blacklisted data, and segregating FFPEs.

Table 1. This table provides a breakdown of sample counts on a per sample type and, if applicable, per subtype basis. Each count is a link to a table containing a list of the samples that comprise that count and details pertaining to each individual sample (e.g. platform, sequencing center, etc.). Please note, there are usually multiple protocols per data type, so there are typically many more rows than the count implies.


TD					Pretty ration	IIIKINA	mRNASeq	miĸ	mikSeq	RPPA	MAF	rawMAF
TP	57	5Z	56	0	5Z	0	57	0	56	<u>48</u>	57	0
NB	51	51	49	0	0	0	0	0	0	0	0	0
NT	<u>6</u>	<u>6</u>	<u>6</u>	0	0	0	0	0	0	0	0	0
Totals 5	57	57	56	0	57	0	57	0	56	48	57	0

Users find these very helpful, by showing:

Counts broken down by tissue and data type

Redactions and other filtered samples (replicate aliquots, FFPEs)

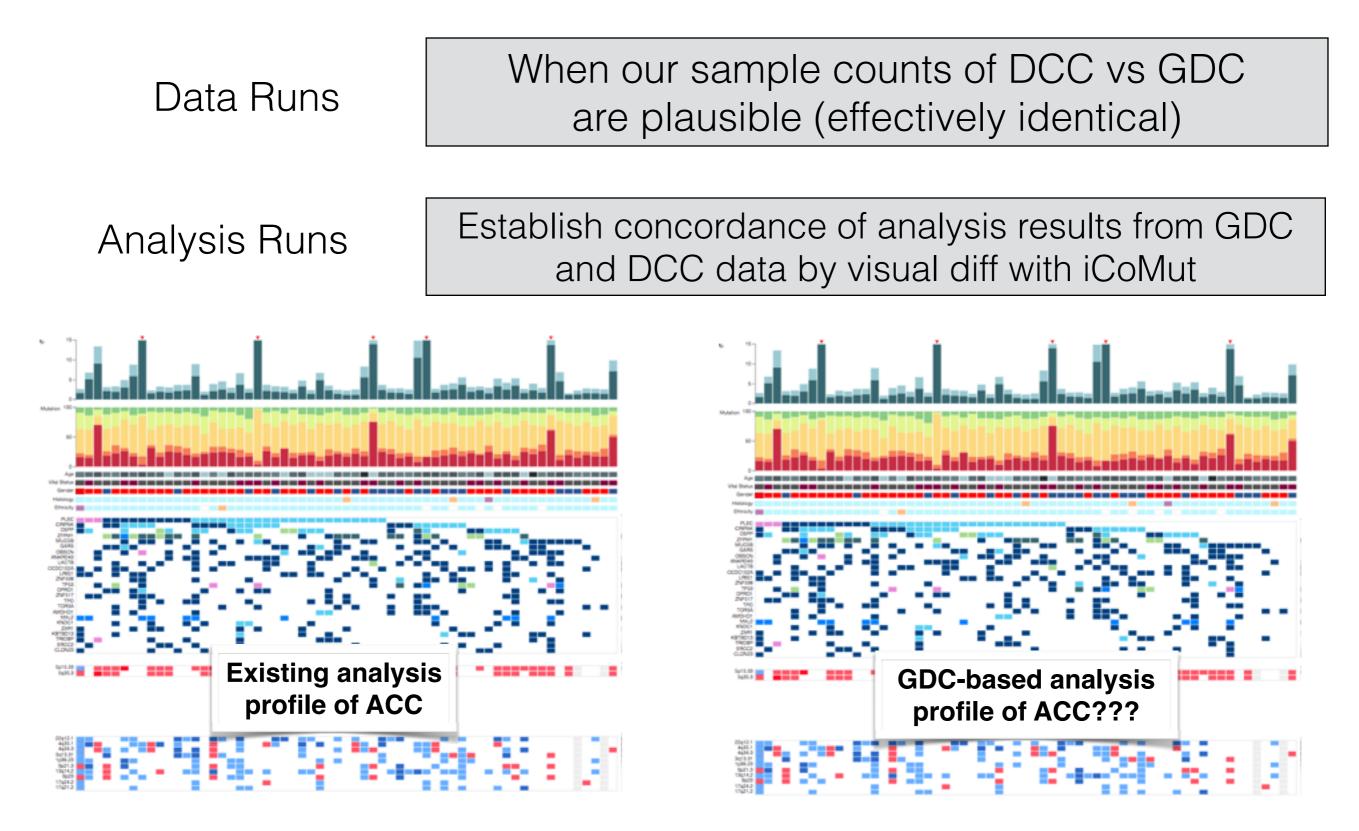
Provenance of every aliquot in run (all the way back to submitting center)

And sample heatmaps

What about TARGET?

We have no data or analysis pipelines for TARGET

But GDCtools aims to be flexible & easily configured to mirror any PROGRAM or PROJECT from GDC


We verified this morning by initiating TARGET mirror

Remaining Work

After establishing full confidence in sample counts (we're about 95% confident right now)

Perform production data run, with reports (2-3 weeks)
 Then kick off an GDC-only analysis run (Aug)
 Finish phase 1 of Python bindings in *GDCtools* Document *GDCtools* repo & initial release (Sept)

Public Release Criteria

http://firebrowse.org/iCoMut/?cohort=ACC

GDAN readiness, GDC and the Cloud

GDAN will combine GDC and cloud-based analysis But why copy data from GDC to local compute? We can save money, time, and reduce confusion IF:

- Instead of ONLY supporting JSON download of data
- GDC also loaded data into vendor-neutral cloud storage
- And exposed data via bucket-ized URIs
- So that algorithms in cloud-based analysis systems
- Don't have to copy data from GDC, but rather just reference it in available cloud storage
- Avoiding double-copies and additional costs (double-pay)

Fin