

Firehose: A Case Study in Big Data Genomics

MIT Lincoln Laboratory October 4, 2013

Michael S. Noble

Assistant Director for Data Science Cancer Genome Analysis Group The Broad Institute of MIT & Harvard

Senior Manager, TCGA Genome Data Analysis Center

Acknowledgements

PI: Lynda Chin, Gaddy Getz

Broad Institute

Douglas Voet Daniel DiCara Gordon Saksena Hailei Zhang David Heiman Juok Cho William Mallard Harindra Arichchi Michael Lawrence Petar Stojanov Lihua Zou Chip Stewart Scott Frazer Pei Lin Kristian Cibulskis Jaegil Kim Lee Lichtenstein Aaron McKenna Andrey Sivachenko Carrie Sougnez Lee Lichtenstein Steven Schumacher **Raktim Sinha**

Belfer/DFCI/MDACC

Juinhua Zhang Spring Liu Sachet Shukla Terrence Wu

IGV & GenePattern teams @ Broad

Jill Mesirov Michael Reich Peter Carr Marc-Danie Nazaire Jim Robinson Helga Thorvaldsdottir

Broad Institute Leadership: Todd Golub, Eric Lander

Harvard Medical School

Matthew Meyerson Andrew Cherniack Juliann Chmielecki Rameen Beroukhim Scott Carter

The Cancer Genome Atlas

Peter Park Nils Gehlenborg Semin Lee Richard Park

Making Cancer History'

<u>Outline</u>

Why Firehose?
 What we produce
 Recent highlights
 Observations

<u>Outline</u>

Why Firehose?
 What we produce
 Recent highlights
 Observations

"Big Data Science Through Software" More than science or software itself

1. Why?

Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, now sits atop ~30 terabytes of TCGA data and reliably executes more than 2300 pipelines per month.

Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, now sits atop ~ (terabytes 40) of TCGA data and reliably executes more than 2000 pipelines per month. 600

Of solitary, manual experimentation on small sample sets ...

% create a folder
% download *data.from.some.where*% run_your_computational_analysis

Of solitary, manual experimentation on small sample sets ...

Then get distracted, do it again ... Forget, search ... lose track, search ... Repeat ... for 20 more disease types GBM, LUNG, AML, ...

Of solitary, manual experimentation on small sample sets ...

Then multiply by 5, 10 ... researchers at your site

Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	153	108	99	0	138	0	96	0	124	54	28
BRCA	914	866	874	0	889	529	805	0	868	408	507
CESC	122	32	102	0	122	0	0	0	122	0	36
COAD	423	423	413	69	420	155	192	0	407	269	155
COADREAD	592	591	575	104	582	224	264	0	550	399	224
DLBC	28	0	17	0	17	0	0	0	16	0	0
GBM	598	565	563	0	411	542	161	491	0	214	276
HNSC	328	315	294	96	310	0	303	0	309	212	0
KICH	66	0	65	0	65	0	0	0	0	0	0
KIRC	502	502	493	0	500	72	469	0	480	454	403
KIRP	149	103	103	0	103	16	63	0	103	0	0
LAML	202	200	0	0	194	0	179	0	187	0	199
LGG	222	198	180	0	176	27	110	0	180	0	0
LIHC	99	62	97	0	98	0	17	0	96	0	0
LUAD	439	294	356	0	430	32	353	0	365	237	229
LUSC	376	327	343	0	359	154	223	0	332	195	178
OV	592	580	566	0	557	575	297	570	454	412	316
PAAD	57	0	48	0	40	0	0	0	34	0	0
PANCAN8	4086	3882	3907	210	3798	2150	2515	1061	3169	2282	2152
PRAD	180	127	171	0	172	0	140	0	170	0	83
READ	169	168	162	35	162	69	72	0	143	130	69
SARC	29	0	29	0	29	0	0	0	29	0	0
SKCM	273	138	253	101	253	0	247	0	240	164	0
STAD	238	162	144	0	145	0	43	0	134	0	116
THCA	435	218	330	94	353	0	254	0	349	224	323
UCEC	512	451	493	106	500	54	333	0	485	200	248
Totals	7106	5839	6195	501	6443	2225	4357	1061	5627	3173	3166

Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	153	108	99	0	138	0	96	0	124	54	28
BRCA	914	866	874	0	889	529	805	0	868	408	507
CESC	122	32	102	0	122	0	0	0	122	0	36
COAD	423	423	413	69	420	155	192	0	407	269	155
COADREAD	592	591	575	104	582	224	264	0	550	399	224
DLBC	28	0	17	0	17	0	0	0	16	0	0
GBM	598	565	563	0	411	542	161	491	0	214	276
HNSC	328	315	294	96	310	0	303	0	309	212	0
KICH						0	0	0	0	0	0
KIRC	Dif	ffs sii	1ce	Nov	2011	72	469	0	480	454	403
KIRP						16	63	0	103	0	0
LAML		(~11	(sa	mple	es)	0	179	0	187	0	199
LGG						27	110	0	180	0	0
LIHC	99	62	97	0	98	0	17	0	96	0	0
LUAD	439	294	356	0	430	32	353	0	365	237	229
LUSC	376	327	343	0	359	154	223	0	332	195	178
OV	592	580	566	0	557	575	297	570	454	412	316
PAAD	57	0	48	0	40	0	0	0	34	0	0
PANCAN8	4086	3882	3907	210	3798	2150	2515	1061	3169	2282	2152
PRAD	180	127	171	0	172	0	140	0	170	0	83
READ	169	168	162	35	162	69	72	0	143	130	69
SARC	29	0	29	0	29	0	0	0	29	0	0
SKCM	273	138	253	101	253	0	247	0	240	164	0
STAD	238	162	144	0	145	0	43	0	134	0	116
THCA	435	218	330	94	353	0	254	0	349	224	323
UCEC	512	451	493	106	500	54	333	0	485	200	248
Totals	7106	5839	6195	501	6443	2225	4357	1061	5627	3173	3166
	+1830	+1665	+2021		+4181						+1142

Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	153	108	99	0	138	0	96	0	124	54	28
BRCA	914	866	874	0	889	529	805	0	868	408	507
CESC	122	32	102	0	122	0	0	0	122	0	36
COAD	423	423	413	69	420	155	192	0	407	269	155
COADREAD	592	591	575	104	582	224	264	0	550	399	224
DLBC	28	0	17	0	17	0	0	0	16	0	0
GBM	598	565	563	0	411	542	161	491	0	214	276
HNSC	328	315	294	96	310	0	303	0	309	212	0
KICH						0		_		-	0
KIRC	Dif	fs sir	ice [NOV	2011	72	Ne	w da	ta tv	pes	403
KIRP						16					0
LAML		(~11)	(sar	nple	es)	0	(12)	.5K s	amp	les)	199
LGG						27					0
LIHC	99	62	97	0	98	0	17	0	96	0	0
LUAD	439	294	356	0	430	32	353	0	365	237	229
LUSC	376	327	343	0	359	154	223	0	332	195	178
OV	592	580	566	0	557	575	297	570	454	412	316
PAAD	57	0	48	0	40	0	0	0	34	0	0
PANCAN8	4086	3882	3907	210	3798	2150	2515	1061	3169	2282	2152
PRAD	180	127	171	0	172	0	140	0	170	0	83
READ	169	168	162	35	162	69	72	0	143	130	69
SARC	29	0	29	0	29	0	0	0	29	0	0
SKCM	273	138	253	101	253	0	247	0	240	164	0
STAD	238	162	144	0	145	0	43	0	134	0	116
THCA	435	218	330	94	353	0	254	0	349	224	323
UCEC	512	451	493	106	500	54	333	0	485	200	248
Totals	7106	5839	6195	501	6443	2225	4357	1061	5627	3173	3166
	+1830	+1665	+2021	+501	+4181		+4357		+5267	+3173	+1142

Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNAseq	miR	miRseq	RPPA	MAF
BLCA	153	108	99	0	138	0	96	0	124	54	28
BRCA	914	866	874	0	889	529	805	0	868	408	507
CESC	122	32	102	0	122	0	0	0	122	0	36
COAD	423	423	413	69	420	155	192	0	407	269	155
COADREAD	592	591	575	104	582	224	264	0	550	399	224
DLBC	28	0	17	0	17	0	0	0	16	0	0
GBM	598	565	563	0	411	542	161	491	0	214	276
HNSC	328	315	294	96	310	0	303	0	309	212	0
KICH						0				-	0
KIRC	Dif	fs sir	nce l	NOV	2011	72	Ne	w da'	ta tv	bes	403
KIRP						16					0
LAML		(~11)	Sar	nple	es)	0	(12)	.5K s	amp	les)	199
LGG						27					0
LIHC	99	62	97	0	98	0	17	0	96	0	0
LUAD	439	294	356	0	430	32	353	0	365	237	229
LUSC	376	327	343	0	359	154	223	0	332	195	178
OV	592	580	C				0/		454	412	316
PAAD	57	0	3	ING	le ve		~24		34	0	0
PANCAN8	4086	3882				_			3169	2282	2152
PRAD	180	127	no		amn	0 2	liau	nte	170	0	83
READ	169	168			anp		IIYU		143	130	69
SARC	29	0	29	0	29	0	0	0	29	0	0
SKCM	273	138	253	101	253	0	247	0	240	164	0
STAD	238	162	144	0	145	0	43	0	134	0	116
THCA	435	218	330	94	353	0	254	0	349	224	323
UCEC	512	451	493	106	500	54	333	0	485	200	248
Totals	7106	5839	6195	501	6443	2225	4357	1061	5627	3173	3166
	+1830	+1665	+2021	+501	+4181		+4357		+5267	+3173	+1142

Context: 2-3 orders magnitude shift

Ex	Exome Sequencing Studies of Cancer in 2011								
Cancer Type	#Samples	Key Finding(s)	Publication						
Melanoma	14 cases	Frequent mutations in GRIN2A	Wei et al. Nat Genet. 2011.						
Metastatic Melanoma	8 cell lines	Mutations in MAP3K5 and MAP3K9	Stark et al. Nat Genet. 2011						
Melanoma	7 cell lines	Recurring somatic MAP2K1 and MAP2K2 mutations (8%)	Nikolaev et al. Nat Genet. 2011						
Head and neck squamous cell	74 cases	Mutations in TP53, CDKN2A, PIK3CA, HRAS, and squamous differentiation genes.	Stransky et al. Science.						
Head and neck squamous cell	32 cases	Mutations in TP53, CDKN2A, PIK3CA, and HRAS, FBXW7 and NOTCH1. Tumor-suppressor role for NOTCH1.	Agrawal et al. Science 2011.						
Renal carcinoma Pancreatic cancer	7 cases 15 cell lines	Frequent mutation of the SWI/SNF complex gene PBRM1 Genomic instability caused by MLH1 haploinsufficiency and complete deficiency	Varela et al. Nature 2011. Wang et al. Genome Res. 2011						
Pancreatic neoplastic cysts	8 cyst resections	Recurrent mutations in components of ubiquitin-dependent pathways	Wu et al. PNAS 2011.						
Gastric cancer	22 cases	Frequent mutation of ARID1A	Wang et al. Nat Genet 2011.						
Prostate cancer	3 primaries 16 metastases	Recurrent alterations in TP53, DLK2, GPC6, and SDF4	Kumar et al. PNAS 2011						

http://massgenomics.org/2012/01/cancer-genome-and-exome-sequencing-in-2011.html

Understanding TCGA : data flow & levels

Characterization: (individuals) Level 1 – Raw data (e.g. raw reads and qualities, Affymetrix CEL files) Level 2 – Normalized data (e.g. aligned reads – BAM files, intensity matched files) Level 3 – Genomic events (e.g. somatic mutations, segments of copy number changes) Interpretation: (populations) Level 4 Analysis groups a substration of the population of

Level 4 – Analysis across a cohort (e.g. sub-types discovery, correlate data types, significantly mutated genes/regions/pathways, correlation to clinical parameters)

Broad Roles: 3 of 20 TCGA centers

Broad Roles: 3 of 20 TCGA centers

Tremendous, National-Scale Data Coordination & Standards Challenge

Acute Need for Automation, Systematic Rigor, and Transparency

Firehose == Data Factory

Acute Need for Automation, Systematic Rigor, and Transparency

But why is this needed when ...

Home	Query the Data	Download D	ata Tools	About the Data	
lome					
TCGA	Data Portal O	verview			
Ve provide researchers genomic cha	3 ways to download da to search, download, a aracterization data, and	ata: The Cancer and analyze data d high-throughpu	Genome Atlas (TC) a sets generated by ut sequencing anal	GA) Data Portal provid (TCGA. It contains cling ysis of the tumor geno	les a platform for nical information, omes.
	Query the	Data 🔸	ĺ	Download Data →	
	Search summari genes, patients a	zed data for nd pathways	Cł	oose from three ways download data	to
Available (Cancer Types		# Patients with	# Downloadable	
			Samples	Tumor Samples	Date Last Updated (mm/dd/yy)
Acute Mye	loid Leukemia [LAML]		Samples 202	Tumor Samples	Date Last Updated (mm/dd/yy) 02/22/12

... TCGA already has data archive / portal?

Like giant FTP site: no data aggregate / versioning Can I easily identify & retrieve **all** in one shot?

Like giant FTP site: no data aggregate / versioning Can I easily identify & retrieve **all** in one shot?

How to use portal data directly in my research? Are they homogeneous?

Or systematically prepared?

To be ready to load in my R or MatLab script?

Like giant FTP site: no data aggregate / versioning Can I easily identify & retrieve **all** in one shot?

How to use portal data directly in my research? Are they homogeneous?

Or systematically prepared?

To be ready to load in my R or MatLab script?

we had to do this, so would you

Like giant FTP site: no data aggregate / versioning Can I easily identify & retrieve **all** in one shot?

How to use portal data directly in my research? Are they homogeneous?

Or systematically prepared?

we had to do this, so would you

To be ready to load in my R or MatLab script?

... and does not encompass analyses at all

What if I just want to view copy number peaks in Ovarian (GISTIC)? Or glance at an expression or methylation cluster? Must I become an expert first? Spend weeks obtaining protected data credentials

Or becoming a TCGA data guru, obtaining samples spread across many files

And still more time, mastering the analytics

Spend weeks obtaining protected data credentials

Or becoming a TCGA data guru, obtaining samples spread across many files

And still more time, mastering the analytics

Complexity & volume preclude

this approach for many individuals
2. What?

To Address These Firehose Generates

Version-stamped, standardized datasets *Precursor to automated analyses, durable (DCC)*

Version-stamped package of standard analyses results Dozens of algorithms: GISTIC, MutSig, CNMF, ...

With version-stamped, biologist-friendly reports

All of which are citable in the literature (more on that later)

stddata_2013_01_16

Data snapshot on 16 January 2013, packaged into standardized form

awg_lgg__2013_01_16

Packages with same date guaranteed to contain same data subset (for example, custom analyses of lower-grade glioma data)

Drilling into big cancer-genome data, Nature Methods 10, 293–297 (2013)

Frozen snapshot of all TCGA analysis-ready data

- Cast in a form amenable to immediate algorithmic analysis (no additional data preparation required)
- Which provides a consistent point of reference for analysis and citation by marker papers and users of TCGA data
- Towards a formal definition of what constitutes a given tumor dataset
- While minimizing redundant effort across centers and groups to download & prepare data for further analysis
- And enhancing provenance and reproducibility

Frozen snapshot of all TCGA analysis-ready data

- Cast in a form amenable to immediate algorithmic analysis (no additional data preparation required)
- Which provides a consistent point of reference for analysis and citation by marker papers and users of TCGA data
- Towards a formal definition of what constitutes a given tumor dataset
- While minimizing redundant effort across centers and groups to download & prepare data for further analysis
- And enhancing provenance and reproducibility

Address <u>BABEL Problem</u>

20 centers in TCGA, little agreement on quantity of samples across analyses

Save time Decrease waste Increase quality

How? Many ways ... here are several

1) Because sequencers create many files

How? Many ways ... here are several

1) Because sequencers create many files

One sample = one file Submitted to DCC in B batches, over months N samples X B batches = **NxB files**

But your brain, R & MatLab code want one file

One file = NxB samples Don't care how/when submitted to DCC

But your brain, R & MatLab code want one file

One file = NxB samples Don't care how/when submitted to DCC

Transparent aggregation over samples, over time (and over operating system: Linux, WinXX, Mac ...)

Wasteful & error-prone to duplicate this at each TCGA center (or at each of your desks)

Because you want to cite one thing

Our analysis used TCGA stddata_2012_10_04 ...

Consistent point of reference for analysis and citation by marker papers

and users of TCGA data

Data Science: data must become citable

Because you want to cite one thing

Consistent point of reference for analysis and citation by marker papers and users of TCGA data

Data Science: data must become citable

Journals, readers, reproducers want this Step 1: version-stamping the data aggregates Step 2: disciplined use of versioned data throughout TCGA

And retrieve it *clearly & easily*

% firehose_get 2012_10_04

And retrieve it *clearly & easily*

And easily identify what changed

%	gdac_diff	2012_09_1	.3 2	012_10_04	\$PANCAN8
mRN CN Met Cli BCF	Aseq hylation inical	+161 +125 +30 +30 +16	(2304 (3907 (3667 (3864 (4086	total) total) total) total) total)	

2 seconds to understand sample accrual differences across 40+ terabytes of data

Unprecedented Scale: KiloPipeline(s) per Month

stddata__2013_04_06 stddata__2013_04_21 analyses__2013_04_21 2192 datasets packaged for DCC2265 datasets ...942 analyses ...

5400 pipelines across 26 disease cohorts

Unprecedented Scale: KiloPipeline(s) per Month

stddata 2013_04_06 stddata 2013_04_21 analyses 2013_04_21 2192 datasets packaged for DCC2265 datasets ...942 analyses ...

5400 pipelines across 26 disease cohorts

With up to 40 biologist-friendly analysis reports per disease (~700 total)

Unprecedented Scale: KiloPipeline(s) per Month

stddata 2013_04_06 stddata 2013_04_21 analyses 2013_04_21 2192 datasets packaged for DCC2265 datasets ...942 analyses ...

5400 pipelines across 26 disease cohorts

With up to 40 biologist-friendly analysis reports per disease (~700 total)

Single Month: April 2013

Broad Institute TCGA GDAC Internal Process Flow

Version 2011_04_11

This is Your Researcher Brain

When Coding Or Data Exploration Is Hard

When Coding Or Data Exploration Is Hard

> When Easier

Civilization advances by extending the number of important operations which we can perform without thought. A. North Whitehead

Mission

We strive to lead the world in facilitating the extraction of scientific insight from cancer genomics data. We aim to achieve this through the novel application of quantitative algorithms to cancer genomics data, at unprecedented scale; rigorous & traceable software & process; and lucid, accessible mechanisms of dissemination & exploration.

In this spirit we created ...

2013_04_21 stddata Run

2013_04_21 analyses Run

DiseaseType	#Datasets	% Processed	Do	wnload	AnalysisReport	# Pipelines	% Successful	Do	wnload
BLCA	24	100%	Open	Protected	BLCA	59	100%	Open	Protected
BRCA	28	100%	Open	Protected	BRCA	76	100%	Open	Protected
CESC	18	100%	Open	Protected	CESC	56	100%	Open	Protected
COADREAD	34	100%	Open	Protected	COADREAD	76	100%	Open	Protected
COAD	34	100%	Open	Protected	COAD	76	100%	Open	Protected
DLBC	8	100%	Open	Protected	DLBC	10	100%	Open	Protected
ESCA	6	100%	Open	Protected	ESCA	9	100%	Open	Protected
GBM	35	100%	Open	Protected	GBM	77	100%	Open	Protected
HNSC	_		pen	Protected	HNSC	_		pen	Protected
KICH			pen	Protected	KICH	Ano	llucio	pen	Protected
KIRC	Da	ald	pen	Protected	KIRC	Alla	แหรเร	pen	Protected
KIRP			pen	Protected	KIRP		J	pen	Protected
LAML			pen	Protected	LGG			pen	Protected
LGG	IJASN	nnarn	pen	Protected	LIHC	IJASh	nnard	pen	Protected
UHC		NOU U	pen	Protected	LUAD		NOU O	pen	Protected
LUAD		A	Upen	Protected	LUSC			pen	Protected
LUSC	38	100%	Open	Protected	OV	81	100%	Open	Protected
<u>ov</u>	39	100%	Open	Protected	PRAD	56	100%	Open	Protected
PRAD	18	100%	Open	Protected	READ	76	100%	Open	Protected
READ	34	100%	Open	Protected	SARC	13	100%	Open	Protected
SARC	9	100%	Open	Protected	SKCM	59	100%	Open	Protected
SKCM	21	100%	Open	Protected	STAD	56	100%	Open	Protected
STAD	22	100%	Open	Protected	THCA	59	100%	Open	Protected
THCA	24	100%	Open	Protected	UCEC	76	100%	Open	Protected
UCEC	34	100%	Open	Protected	LAML	55	98%	Open	Protected
PANCAN12	58	92%	Open	Protected	PANCAN12	14	61%	Open	Protected

Data Notes FAQ Download Result Reports Analysis Notes

Welcome to the online home of the <u>Broad Institute's</u> Genome Data Analysis Center (GDAC). On behalf of <u>The Cancer Genome</u> <u>Atlas</u>, we've designed and operate <u>scientific data</u> and <u>analysis pipelines</u> which pump terabyte-scale genomic datasets through scores of quantitative algorithms, in the hope of accelerating the understanding of cancer. See the dashboards above for details of the latest runs, or <u>our presentations page</u> for more background information. Note that downloading data from our site constitutes agreement to <u>this data usage policy</u>.

gdac.broadinstitute.org

With open/public/passwordless dashboards

2013_04_21 analyses Run

Tables of Ingested Data: HTML PNG TSV

AnalysisReport	# Pipelines	% Successful	Do	wnload
BLCA	59	100%	Open	Protected
BRCA	76	100%	Open	Protected
CESC	56	100%	Open	Protected
COADREAD	76	100%	Open	Protected
COAD	76	100%	Open	Protected
DLBC	10	100%	Open	Protected
ESCA	9	100%	Open	Protected
GBM	77	100%	Open	Protected
HNSC	59	100%	Open	Protected
KICH	28	100%	Open	Protected
KIRC	76	100%	Open	Protected
KIRP	73	100%	Open	Protected
LGG	73	100%	Open	Protected
LIHC	34	100%	Open	Protected
LUAD	76	100%	Open	Protected
LUSC	76	100%	Open	Protected
<u>ov</u>	81	100%	Open	Protected
PRAD	56	100%	Open	Protected
READ	76	100%	Open	Protected
SARC	13	100%	Open	Protected
SKCM	59	100%	Open	Protected
STAD	56	100%	Open	Protected
THCA	59	100%	Open	Protected
UCEC	76	100%	Open	Protected
LAML	55	98%	Open	Protected
PANCAN12	14	<u>61%</u>	Open	Protected

Analysis Reports Release Notes Download FAQ Nomenclature Previous Runs

With open/public/passwordless dashboards

		0 101		
nalysisReport	# Pipelines	% Successful	Do	wnload
BLCA	59	100%	Open	Protected
BRCA	76	100%	Open	Protected
CESC	56	100%	Open	Protected
COADREAD	76	100%	Open	Protected
COAD	76	100%	Open	Protected
DLBC	10	100%	Open	Protected
ESCA	9	100%	Open	Protected
GBM	77	100%	Open	Protected
HNSC	59	100%	Open	Protected
KICH	28	100%	Open	Protected
KIRC	76	100%	Open	Protected
KIRP	73	100%	Open	Protected
LGG	73	100%	Open	Protected
LIHC	34	100%	Open	Protected
LUAD	76	100%	Open	Protected
LUSC	76	100%	Open	Protected
OV	81	100%	Open	Protected
PRAD	56	100%	Open	Protected
READ	76	100%	Open	Protected
SARC	13	100%	Open	Protected
SKCM	59	100%	Open	Protected
STAD	56	100%	Open	Protected
THCA	59	100%	Open	Protected
UCEC	76	100%	Open	Protected
LAML	55	98%	Open	Protected
PANCAN12	14	61%	Open	Protected

Analysis Re

Offering biologist-friendly result reports

2013_04_21 analyses Run

Tables of Ingested Data: HTML PNG TSV Samples Summary: Report

AnalysisReport	# Pipelines	% Successful	Do	wnload
BLCA	59	100%	Open	Protected
BRCA	76	100%	Open	Protected
CESC	56	100%	Open	Protected
COADREAD	76	100%	Open	Protected
COAD	76	100%	Open	Protected
DLBC	10	100%	Open	Protected
ESCA	9	100%	Open	Protected
GBM	77	100%	Open	Protected
HNSC	59	100%	Open	Protected
KICH	28	100%	Open	Protected
KIRC	76	100%	Open	Protected
KIRP	73	100%	Open	Protected
LGG	73	100%	Open	Protected
LIHC	34	100%	Open	Protected
LUAD	76	100%	Open	Protected
LUSC	76	100%	Open	Protected
OV	81	100%	Open	Protected
PRAD	56	100%	Open	Protected
READ	76	100%	Open	Protected
SARC	13	100%	Open	Protected
SKCM	59	100%	Open	Protected
STAD	56	100%	Open	Protected
THCA	59	100%	Open	Protected
UCEC	76	100%	Open	Protected
LAML	55	98%	Open	Protected
PANCAN12	14	61%	Open	Protected

Offering biologist-friendly result reports

2013_04_21 analyses Run

Tables of Ingested Data: HTML PNG TSV Samples Summary: Report

AnalysisReport	# Pipelines	% Successful	Do	wnload
BLCA	59	100%	Open	Protected
BRCA	76	100%	Open	Protected
CESC	56	100%	Open	Protected
COADREAD	76	100%	Open	Protected
COAD	76	100%	Open	Protected
DLBC	10	100%	Open	Protected
ESCA	9	100%	Open	Protected
GBM	77	100%	Open	Protected
HNSC	59	100%	Open	Protected
KICH	28	100%	Open	Protected
KIRC	76	100%	Open	Protected
KIRP	73	100%	Open	Protected
LGG	73	100%	Open	Protected
LIHC	34	100%	Open	Protected
LUAD	76	100%	Open	Protected
LUSC	76	100%	Open	Protected
OV	81	100%	Open	Protected
PRAD	56	100%	Open	Protected
READ	76	100%	Open	Protected
SARC	13	100%	Open	Protected
SKCM	59	100%	Open	Protected
STAD	56	100%	Open	Protected
THCA	59	100%	Open	Protected
UCEC	76	100%	Open	Protected
LAML	55	98%	Open	Protected
PANCAN12	14	61%	Open	Protected

UP < > EXPAND ALL COLLAPSE ALL SET AUTO WIDTH PRINT

Analysis Overview for Ovarian Serous Cystadenocarcinoma

Maintained by TOGA GDAC Team (Broad Institute/Dana-Farber Cancer Institute/Harvard Medical School)

Overview

Introduction

Summary

Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research. While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.

Results

Sequence and Copy Number Analyses

Copy number analysis (GISTIC2)

View Report | There were 547 tumor samples used in this analysis: 29 significant arm-level results, 35 significant focal amplifications, and 46 significant focal deletions were found.

Mutation Analysis (MutSig)

View Report | Significantly mutated genes (q ≤ 0.1): 24

Clustering Analyses

Clustering of mRNA expression: consensus NMF

<u>View Report</u> | The most robust consensus NMF clustering of 565 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

Clustering of mRNA expression: consensus hierarchical

<u>View Report</u> | The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 565 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Clustering of Methylation: consensus NMF

<u>View Report</u> | The 1229 most variable methylated genes were selected based on variation. The variation cutoff are set for each tumor type empirically by fitting a bimodal distriution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 551 samples and 1229 genes identified 6 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Clustering of miR expression: consensus NMF

<u>View Report</u> | We filtered the data to 150 most variable miRs. Consensus NMF clustering of 564 samples and 150 miRs identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Organized like a paper

- Overview ("Abstract")
- Results
- Methods & Data

With Browser Convenience

м	sineling by TCLA GDAC Tam (Proof Institute/Data-Farber Cancer Institute/Tiervard Medical School)
Ξ	Overview
÷	Introduction
-	Summary
	Note: These results are offered to the community as an additional reference point, enabling a wide range of cancer biologists, clinical investigators, and genome and computational scientists to easily incorporate TCGA into the backdrop of ongoing research While every effort is made to ensure that Firehose input data and algorithms are of the highest possible quality, these analyses have not been reviewed by domain experts.
-	Results
	Sequence and Copy Number Analyses
	 Copy number analysis (GISTIC2) <u>View Report</u> There were 547 tumor samples used in this analysis: 29 significant arm-level results, 35 significant foca amplifications, and 46 significant focal deletions were found.
	 Mutation Analysis (MutSig) <u>View Report</u> Significantly mutated genes (q ≤ 0.1): 24
	Chatering Analyses
	 Clustering of mRNA expression: consensus NMF <u>View Report</u> The most robust consensus NMF clustering of 565 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficien to determine the best solution.
	 Clustering of mRNA expression: consensus hierarchical <u>\[]]mr_Report</u> The 1500 most variable genes were selected. Consensus average linkage hierarchical clustering of 565 samples and 1500 genes identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average althoutte width calculation for selecting the robust clusters.
	 Clustering of Methylation: consensus NMF <u>View Report</u> The 1229 most variable methylated genes were selected based on variation. The variation cutoff are set for each tamor type empirically by fitting a bimodal distribution. For genes with multiple methylation probes, we chose the most variable one to represent the gene. Consensus NMF clustering of 561 samples and 1229 genes identified 6 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.
	 Clustering of miR expression: consensus NMF <u>View Report</u> We filtered the data to 150 most variable miRs. Consensus NMF clustering of 564 samples and 150 miR identified 3 subtypes with the stability of the clustering increasing for k = 2 to k = 8 and the average silhouette width calculation for selecting the robust clusters.

Organized like a paper

- Overview ("Abstract")
- Results
- Methods & Data

With Browser Convenience

Ovarian Serous Cystadenocarcinoma: Copy number analysis (GISTIC2)

Maintained by Dan DiCara (Broad Institute

- Overview
- Introduction
- Summary

There were 547 tumor samples used in this analysis: 29 significant arm-level results, 35 significant focal amplifications, and 46 significant focal deletions were found.

Results

Focal results

Figure 1. Genomic positions of amplified regions: the X-axis represents the normalized amplification signals (top) and significance by Q value (bottom). The green line represents the significance cutoff at Q value=0.25.

GET FULL TABLE

Table 1. Amplifications Table - 35 significant amplifications found. Click the link in the last column to view a comprehensive list of candidate genes. If no genes were identified within the peak, the nearest gene appears in brackets.

Cytoband	Q value	Residual Q value	Wide Peak Boundaries	# Genes in Wide Peak
8q24.21	2.6458-77	2.6458-77	chr8:128574848-129810279	5
19q12	1.81470-87	8.49490-76	dr19:34947990-35023082	1
3926.2	1.07228-60	1.07228-60	chr3:170905217-170923258	o [MECOM]
		· Berner of	descent for a set set of	

Ovarian Serous Cystadenocarcinoma: Clustering of mRNA expression: consensus NMF

Maintained by Robert Zapko (Broad Institute)

- Overview
- Introduction
- Summary

The most robust consensus NMF clustering of 565 samples using the 1500 most variable genes was identified for k = 3 clusters. We computed the clustering for k = 2 to k = 8 and used the cophenetic correlation coefficient to determine the best solution.

- Results
- Gene expression patterns of molecular subtypes
- Consensus and correlation matrix

Figure 2. The consensus matrix after clustering shows 3 clusters with limited overlap between clusters.

GET HIGH-RES IMAGE

There were 558 tumor samples used in this analysis: 29 significant arm-level results, 34 significant focal amplifications, and 47 significant focal deletions were found.

- Results •

- + Focal results •
- Arm-level results •

1049

4q

0.07

able	3. Arm-le	evel significance	e table - 29	significant re	sults found.	GET	FULL TABLE		
Arm	# Genes	Amp Frequency	Amp Z score	Amp Q value	Del Frequency	Del Z score	Del Q value		
1p	2121	0.21	0.131	1	0.10	-5.72	1		
1q	1955	0.34	6.49	4.26e-10	0.09	-6.29	1		
2p	924	0.27	-2.25	1	0.07	-10.7	1		
2q	1556	0.22	-2.32	1	0.07	-9.07	1		
3P	1062	0.23	-3.6	1	0.20	-4.8	1		
39	1139	0.49	9.71	0			مايرامير	al forma at for All	
4D	489	0.14	-7.22	1	- Sta	andar	a visua	al format for ALI	– bik

1

-7.69

There were 558 tumor samples used in this analysis: 29 significant arm-level results, 34 significant focal amplifications, and 47 significant focal deletions were found.

- Results •

40

1049

0.07

- + Focal results •
- Arm-level results

Arm	# Genes	Amp Frequency	Amp Z score	Amp Q value	Del Frequency	Del Z score	Del Q value
1p	2121	0.21	0.131	1	0.10	-5.72	1
1q	1955	0.34	6.49	4.26e-10	0.09	-6.29	1
2p	924	0.27	-2.25	1	0.07	-10.7	1
2q	1556	0.22	-2.32	X	0.07	-9.07	1
3P	1062	0.23	-3.6	1	0.20	-4.8	1
39	1139	0.49	9.71	0		nder	dyicy
4p	489	0.14	-7.22	1	 Sla 	andar	u visi

1

-7.69

- Standard visual format for ALL pipelines
 As little as 3-5 simple R calls
- Thoughtfully Scoped:
 - drill from overview to details
 - Significant results "bubble up"

There were 558 tumor samples used in this analysis: 29 significant arm-level results, 34 significant focal amplifications, and 47 significant focal deletions were found.

- Results •

- + Focal results •
- Arm-level results

		<u> </u>				GET	FULL TABLE	
Table :	3. Arm-le	evel significance	e table - 29	significant re	sults found.			
Arm	# Genes	Amp Frequency	Amp Z score	Amp Q value	Del Frequency	Del Z score	Del Q value	
1p	2121	0.21	0.131	1	0.10	-5.72	1	
1q	1955	0.34	6.49	4.26e-10	0.09	-6.29	1	
2p	924	0.27	-2.25	1	0.07	-10.7	1	
2q	1556	0.22	-2.32	X	0.07	-9.07	1	
3P	1062	0.23	-3.6	1	0.20	-4.8	1	
3q 4p	1139 489	0.49 0.14	9.71 -7.22	0	• Sta	andar	d visua	al format for ALL pipeline
49	1049	0.07	-7.69	1	As • As	little a	as 3-5	simple R calls
					• The	ought drill fr Signif	tfully S om ov icant r	coped: erview to details results "bubble up"
						don't	t miss	needle in haystack

There were 558 tumor samples used in this analysis: 29 significant arm-level results, 34 significant focal amplifications, and 47 significant focal deletions were found.

- Results •

- + Focal results •
- Arm-level results

Table 3. Arm-level significance table - 29 significant results found.

-7.69

0.07

1049

RIGOR: nothing thrown away

Arm	# Genes	Amp Frequency	Amp Z score	Amp Q value	Del Frequency	Del Z score	Del Q value	
1p	2121	0.21	0.131	1	0.10	-5.72	1	
1q	1955	0.34	6.49	4.26e-10	0.09	-6.29	1	
2p	924	0.27	-2.25	1	0.07	-10.7	1	
2q	1556	0.22	-2.32		0.07	-9.07	1	
3P	1062	0.23	-3.6	1	0.20	-4.8	1	
39	1139	0.49	9.71	0			dyiou	
4p	489	0.14	-7.22	1	- Sla	andar	u visu	Ċ

1

- Standard visual format for ALL pipelines
- As little as 3-5 simple R calls
 - Thoughtfully Scoped:
 - drill from overview to details
 - Significant results "bubble up"
 - don't miss needle in haystack

Firehose Reports | At-a-Glance BROA

→ Reports are compatible with Firefox 4+, Chrome 12+, Safari 5+, Opera 11+ and Internet Explorer 9+.

Again, aimed at solid design & engineering

Nozzle package downloadable as open source

Used in multiple external projects
Dead Simple Bulk Retrieval

firehose_get : retrieve open-access results of Broad Institute TCGA GDAC runs
Version: 0.3.3 (Author: Michael S. Noble)

Usage: firehose_get [flags] RunType Date [tumor_type, ...]

firehose get BLCA BRCA CESC COADREAD DLBC GBM HNSC KIRC KIRP LAML LGG LIHC LNNH LUAD LUSC OV PAAD PRAD SKCM STAD THCA UCEC PANCANCER

- Download all or parts
- Of any posted runs
- Open & password access
- Select by run type & date

- Subselect by disease type
- Or analysis type:
- See what runs we did
- Or what analyses in each

20K script

% firehose_get -runs

Run	At_DCC	Available_From_Broad_GDAC
 analyses2012_04_25 analyses2012_05_25 analyses2012_06_23 analyses2012_07_25	yes yes yes no	yes yes yes yes

% firehose_get -tasks analyses 2012_07_25

CopyNumber_Gistic2 Correlate_Clinical_vs_CopyNumber_Arm Correlate_Clinical_vs_Molecular_Signatures Correlate_Clinical_vs_Mutation ... Correlate_CopyNumber_vs_miR Correlate_CopyNumber_vs_mRNAseq Correlate_Methylation_vs_mRNA Methylation_Clustering_CNMF miRseq_Clustering_CNMF miRseq_Clustering_Consensus miR_Clustering_CNMF . . . mRNAseq_Clustering_CNMF mRNAseq_Clustering_Consensus mRNAseq_Preprocess Mutation_Significance Pathway_FindEnrichedGenes Pathway_Paradigm_Expression RPPA_Clustering_CNMF ...

These analyses are what is described by the reports on our GDAC dashboards

Democratize TCGA science: lower entry barriers

- Enable readers (PIs, bench bios, clinical trialists, DotComs)
- To quickly take pulse of TCGA for given disease type(s)
- With just a few glances at common representational figures
- Not deep head-scratching or big time investment

Democratize TCGA science: lower entry barriers

- Enable readers (PIs, bench bios, clinical trialists, DotComs)
- To quickly take pulse of TCGA for given disease type(s)
- With just a few glances at common representational figures
- Not deep head-scratching or big time investment

"Oh, that's interesting, maybe my code has found something here ... I wonder if this is seen in the Firehose version 2013_04_21 results, too?"

When easy things kept easy, harder things become possible

Established Traction as Nexus Resource

	Pages	Hits	Bandwidth
Interactive Use	643,858 (221.18 Pages/Visit)	757,376 (260.17 Hits/Visit)	277.61 GB (99997.5 KB/Visit)
firehose_get downloads		108,397+1198	1567.50 GB
May 2013	640K pages	860K hits	1.8 TB traffic
July 2013			> 2 TB traffic

- Across dozens of centers & portals
- Research / Academic / Commercial
- National & International

With Open (-Source) / Transparent Look & Feel

Q: Why does your table of ingested data show that disease type XYZ has N mutation samples?

- A: Our precedence rules for ingesting mutation samples are:
 - 1. Prefer manually-curated MAF from the respective analysis working group (AWG), on the premise t
 - 2. When no AWG MAF is available, fall back to using what is available in the DCC by automatic subn
 - 3. Otherwise Firehose will contain zero mutation samples for that disease type.

We're in the process of defining a fourth rule, however, to account for the evolving nature of TCGA mutati accrue at the DCC (again, automatically submitted by the respective GSCs), and it is natural for analysts

For more information, please consult our provenance table for mutation data, the TCGA MAF workflow ar will likely support VCFs once they become sufficiently prevalent in the TCGA dataflow.

Q: Why does your <u>table of ingested data</u> show that disease type XYZ has N methylation samples A: We ingest and support both of the major methylation platforms (meth450 and meth27), therefore the statistical algorithms used by TCGA AWGs to merge both of these methylation platforms into a single bol higher resolution data.

FAQ

Q: What TCGA sample types are Firehose pipelines executed upon?

A: Since inception Firehose analyses have been executed upon tumor samples and then correlated with exception is <u>melanoma (SKCM)</u>, which we analyze using metastatic tumor samples (code 06) as it is usu we will include a larger range of sample types, including normals.

Q: What do you do when multiple aliquot barcodes exist for a given sample/portion/analyte combo A: To date GDAC analyses have proceeded upon one single tumor sample per patient, so when multiple metrics, we use the following rules to make such selections:

Confee D analytics succe T where DNA eliments of both time suich.

Dashboard → Broad TCGA GDAC → Browse Space → Mail Archive → Thread → Re: [GDAC-users] firehose - download normal expression values

Re: [GDAC-users] firehose - download normal expression values

Browse - Log In Search

 Subject:
 Re: [GDAC-users] firehose - download normal expression values (find more)

 From:
 David Tamborero <hidden> (find more)

 Date:
 Aug 26, 2012 14:22

Thank you very much, your work and help is priceless.

2012/8/24 Michael S. Noble <hidden>

>

> Dear David,

> Apologies for the delay in responding. Yes, you are right: our outputs do > not

> contain normals. This is partly a legacy held over from the TCGA pilot > studies, which is where many of the analyses in our GDAC originally stem > from. Our FAQ online at gdac.broadinstitute.org discusses this in the > section

> 500

> Q: What TCGA sample types are Firehose pipelines executed upon? >

> and points out that we aim to support a	normals in	the I	Fall of	2012.
---	------------	-------	---------	-------

>

> Regards,

> Mike Noble

>

Searchable Mail Archive

Dashboard	Broad TCGA GDAC	Browse Space	Mail Archive	• Threa
Re: IGDA	Cuseral frehose - down	load normal evon	sector values	

From: David Tamborero <hidden> (find more) Date: Aug 26, 2012 14:22</hidden>	Searchable
Thank you very much, your work and help is priceless. 2012/8/24 Michael S. Noble <hidden></hidden>	Mail Archive
Apologies for the delay in responding. Yes, you are ri not contain normals. This is partly a legacy held over fro studies, which is where many of the analyses in our GDA	ght: our outputs do m the TCGA pilot C originally stem see this in the
 section 	June 2012 (2012_06_23)
Q: What TCGA sample types are Firehose pipelines and points out that we aim to support normals in the Regards, Mike Noble	 Increased number of archives generated from 777 to 993 Increased number of reports from 227 to 252 2,244 new samples reflected since May analyses run, due to more data and better counting: 76 LowP (new sample type - Low Pass DNAseq) 230 BCR 307 Clinical 618 mRNAseq 937 miRseq 76 MAF GISTIC2 report now includes a description of both the input and output files in the Methods & Data section Methylation data:
Detailed	 Rewired pipelines to include meth450 platform, and also give it preference over meth27 when both are present. (Methods to combine 450 & 27 analytically are not in Firehose: would be nice for AWGs to provide if possible) This greatly increases count of methylation samples flowing through analyses (e.g. UCEC 117–>363) Most clusterings show similar results, but some are discordant with previous runs: we could use AWG help to evaluate, and will post comparative analysis only towards that end
Release	 6. New clustering pipelines heuristic: a sample will be dropped from analyses when 80% or more genes are absent. 7. mRNAseq: we now utilize maseqv2 archives, but fall back to v1 maseq when v2 is not available for a given tumor type RSEM estimation used for downstream clustering & correlation analysis, when available, otherwise RPKM estimation will used RSEM is used to estimate gene and transcript abundances (<u>http://deweylab.biostat.wisc.edu/rsem/rsem-calculate-expression.html</u>); values are normalized to a fixed upper quartile value of 1000 for gene and 300 for transcript level estimates, and the normalized values are placed in a separate file (From the DCC
. .	Cocument). The following showed the boxplot of BBCA mRNAseg samples with log2 transformed RESM (left) and RPKM (right)

TAXABLE TAXABLE

1

Browse - Log In Search

3. Recent Highlights

Custom Runs for Analysis Working Groups

- limited to a single disease cohort
- and in particular subtypes thereof
- executed by request of the AWG
- on latest snapshot of data from DCC
- avoid time & sample lag of monthly runs

Custom Runs for Analysis Working Groups

- limited to a single disease cohort
- and in particular subtypes thereof
- executed by request of the AWG
- on latest snapshot of data from DCC
- avoid time & sample lag of monthly runs

Provides <u>real time</u> scientific value to TCGA AWGs

Using same internal Firehose machinery, public-facing dashboards, *Nozzle* reports, **firehose_get** etc, known to community

DiseaseType	AWG Run Dashboard
GBM	2013 02 17
	2013_04_06
LGG	2013 02 03
	2013 01 16
HNSC	2013_03_30
LUAD	2013_02_07
	2012 11 15
PANCAN8	2012 08 25
SKCM	2013_01_16
	2012 12 21
STAD	2013 04 17
THCA	2013 03 18
	2012 10 24

TCGA AWG analyses for Lower Grade Glioma: 2013_04_06

Maintained by TCGA GDAC Team (Broad Institute/MD Anderson Cancer Center/Harvard Medical School)

Custom Google-Powered Search Engine

gistic thyroid

Search Results

Thyroid Adenocarcinoma: Correlation between copy number ...

Mar 13, 2013 ... Testing the association between copy number variation of 19 ... gdac.broadinstitute.org/runs/analyses_latest/.../nozzle.html

Thyroid Adenocarcinoma: Clustering of copy number data ...

Mar 13, 2013 ... *Thyroid* Adenocarcinoma: Clustering of copy number data: consens NMF The all lesions file is from *GISTIC* pipeline and summarizes the results from ...

gdac.broadinstitute.org/runs/analyses__latest/.../nozzle.html

Thyroid Adenocarcinoma: Copy number analysis (GISTIC2) Mar 12, 2013 ... Thyroid Adenocarcinoma: Copy number analysis (GIST

(primary solid tumor cohort). Maintained by Dan DiCara (Broad Institu Overview. Introduction ...

gdac.broadinstitute.org/runs/analyses...TP/.../gistic2/nozzle.html

Thyroid Adenocarcinoma: Correlations between copy number and ...

Feb 21, 2013 ... Thyroid Adenocarcinoma: Correlations between copy number and . gene derived by GISTIC pipelinePearson correlation coefficients were calculated fo each ...

gdac.broadinstitute.org/runs/analyses___2013.../nozzle.html

WEB IMAGE

About 13 results (0.35 seconds)

Streamline extraction of meaning from TCGA data & Firehose analyses

Digital Object Identifiers (DOIs)

- Mutation Analysis (MutSig v1.5) <u>View Report</u> |
- Mutation Analysis (MutSig v2.0) <u>View Report</u> |
- Mutation Analysis (MutSigCV vo.9) <u>View Report</u> |

Hundreds of reports generated per month, citable directly in literature First of its kind at Broad Institute: nothing at this scale, anywhere?

High Resolution Sample Provenance

2013_04_21 analyses Run

Tables of Ingested Data: HTML PNG TSV Samples Summary: Report

AnalysisReport	# Pipelines	% Successful	Do	wnload	
BLCA	59	100%	Open	Protected	
BRCA	76	100%	Open	Protected	
CESC	56	100%	Open	Protected	
COADREAD	76	100%	Open	Protected	
COAD	76	100%	Open	Protected	
DLBC	10	100%	Open	Protected	
ESCA	9	100%	Open	Protected	
GBM	77	100%	Open	Protected	
HNSC	59	100%	Open	Protected	
KICH	28	100%	Open	Protected	
KIRC	76	100%	Open	Protected	
KIRP	73	100			!
LGG	73	100			_INK
LIHC	34	100			
LUAD	76	100			
LUSC	76	100			
<u>ov</u>	81	100			. fa
PRAD	56	100 Ha	JISE	es de	ar io
READ	76	100		_	
SARC	13	100 02	920	of a	$\sim \sim \sim \sim \sim$
SKCM	59	100		UT U	
STAD	56	100%	Open	Protected	
THCA	59	100%	Open	Protected	
UCEC	76	100%	Open	Protected	
LAML	55	98%	Open	Protected	
PANCAN12	14	61%	Open	Protected	

Overview

+ Introduction

Summary

There were 70 redacted samples, 2787 replicate aliquots, and 155 blacklisted aliquots. The table below represents the sam counts for those samples that were ingested into firehose after filtering out redactions, replicates, and blacklisted data.

													GET
	Table 1. Sun	nmary of TCGA	Tumo	Data. Clic	kon a ti	amor typ	e to display a tu	mor type s	specific Samp	les Sur	nmary Rep	oort.	
		Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	RPPA	MAF
		BLCA	171	135	153	105	153	0	122	0	150	54	28
		BRCA	967	878	927	0	928	526	842	0	892	408	772
		CESC	144	40	129	0	134	0	116	0	122	0	39
		COAD	423	423	422	69	420	153	364	0	407	269	155
		COADREAD	592	591	586	104	582	222	488	0	550	399	224
	to o			hhc		Ъ			0	0	16	0	0
eu		iery c	las	SIDC	Jai	U			0	0	0	0	0
									160	491	0	214	291
									304	0	356	212	306
							c		66	0	66	0	65
rс	clarity,	com	pre	ener	nsi	ver	ness a	ς L	480	0	481	454	293
	, (,		•			. –			76	0	117	0	111
SS	tor da	ata re	SO	lutic	n	In	ICGA		179	0	187	0	197
									220	0	221	0	217
		LIHC	126	73	99	0	98	0	69	0	96	0	0
		LUAD	563	376	474	0	533	32	353	0	401	237	229
		LUSC	494	327	398	0	385	154	261	0	349	195	178
		OV	592	580	579	0	584	574	296	570	453	412	316
		PAAD	73	1	57	0	49	0	40	0	34	0	34
		PANCAN12	5591	4936	5248	423	5074	2176	3857	1061	4306	2785	3082
		PRAD	200	156	188	0	188	0	176	0	177	0	83
		READ	169	168	164	35	162	69	124	0	143	130	69
		SARC	73	18	51	0	52	0	0	0	29	0	0
		SKCM	336	191	288	119	316	0	265	0	272	164	253
		STAD	308	178	308	0	308	0	43	0	237	0	116
		THCA	500	318	473	94	500	0	461	0	426	224	323
		UCEC	525	455	498	106	500	54	372	0	487	200	248
		Totals	7916	6244	7333	636	7195	2219	5389	1061	6119	3173	4323

Lung Adenocarcinoma (LUAD) Samples Summary Report

Overview

Introduction

Summary

There were redacted samples, 126 replicate aliquots, and 6 blacklisted aliquots. The table below represents the sample counts for those samples that were ingested into firehose after filtering out redactions, replicates, and blacklisted data.

Table 1. Summary of TCGA Tumor Data.

Tumor	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	RPPA
LUAD	563	376	474	0	533	32	353	0	401	237

Results

Ingested Samples

This section includes a more granular look at the samples ingested into Firehose. A sample counts table is provided type (e.g. Primary Solid Tumor, Recurrent Solid Tumor, Normal Blood, etc.). Furthermore, each count is a link to ar breakdown of the samples and their specific details (e.g. platform, sequencing center, etc.) The following platforms included in the counts depicted in the table below.

- Agilent SurePrint G3 Human CGH Microarray Kit 1x1M
- Agilent Human Genome CGH Microarray 244A
- Agilent Human Genome CGH Custom Microarray 2x415K
- Affymetrix Human Exon 1.0 ST Array
- Illumina DNA Methylation OMA002 Cancer Panel I
- Illumina DNA Methylation OMA003 Cancer Panel I
- Illumina Human1M-Duo BeadChip
- Illumina 550K Infinium HumanHap550 SNP Chip

The sample type short letter codes in the table below are defined in the following list.

- TP: Primary solid Tumor
- TR: Recurrent Solid Tumor
- TB: Primary Blood Derived Cancer Peripheral Blood
- TM: Metastatic
- TAM: Additional Metastatic
- NB: Blood Derived Normal
- NT: Solid Tissue Normal

Table 2. Click on any sample count to display a table detailing all the samples that compare that count. Please note, there are usually mu are typically many more rows than the count implies.

Sample Type	BCR	Clinical	CN	LowP	Methylation	mRNA	mRNASeq	miR	miRSeq	R
TP	563	376	474	0	513	38	353	0	401	6
TR	2	2	2	0	2	0	2	0	2	0
NB	383	284	369	0	0	0	0	0	0	0
NT	173	159	165	0	52	0	52	0	46	0
Totals	563	376	474	0	533	32	353	0	401	2

Figure 1. This figure depicts the distribution of available data on a per participant basis.

R	ed	ac	ti	on	8

LUAD Primary solid Tumor mRNA Data

Table S5.

TCGA Barcode	Platform	Center	Data Level	Protocol
TCGA-05-4244-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-05-4244-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-05-4249-01A-01R-1107-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-05-4249-01A-01R-1107-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-05-4250-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-05-4250-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-35-3615-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-35-3615-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-35-4122-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-35-4122-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-35-4123-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-35-4123-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2655-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2655-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2656-01A-02R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2656-01A-02R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2657-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2657-01A-01R-1107-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2659-01A-01R-0946-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2659-01A-01R-0946-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2661-01A-01R-1107-07	Agilent 244K Castom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2661-01A-01R-1107-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level
TCGA-44-2662-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	2	unc_lowess_normalization_probe_level
TCGA-44-2662-01A-01R-0946-07	Agilent 244K Custom Gene Expression G4502A-07-3	University of North Carolina	3	unc_lowess_normalization_gene_level

4. OBSERVATIONS

This workflow ...

Hundreds of tasks & modules, per disease

This workflow ... is really a META-pipeline of pipelines

Hundreds of tasks & modules, per disease

This workflow ... is really a META-pipeline of pipelines

Some of which are themselves complex pipelined codes.

This workflow ... is really a META-pipeline of pipelines

Some of which are themselves complex pipelined codes. <u>Continuously evolving</u> through years of publication use.

Like ENIAC, no simple task to keep it all running

... in part because ...

A Tale of Two Coders

Software Engineer

Comp Bio / Researcher

Careful, deliberate design Towards production deployment Must be fastidious Exploratory, open-ended analysis Towards publication Can be messy

Overlapping, But Not Identical, Aims

0 miR_FindDirectTargets Correlate_Methylation_vs_mRNA Correlate_Clinical_vs_miR Correlate_Clinical_vs_Methylation Correlate_Clinical_vs_RPPA Methylation_Preprocess mRNAseq_Clustering_Consensus expanded_coMutPlot **Current Analysis** Methylation_Clustering_CNMF Correlate_Clinical_vs_mRNA mRNA_Preprocess_Median 0 mRNA_Clustering_CNMF Workflow miR_Clustering_Consensus miRseq_Mature_Clustering_Consensus RPPA_Clustering_CNMF miR_Clustering_CNMF miRseq_Mature_Preprocess CustomEvents miRseq_Mature_Clustering_CNMF 0 mRNA_Clustering_Consensus Aggregate_Molecular_Subtype_Clusters Correlate_Clinical_vs_Molecular_Subtypes 0 mRNAseq_Clustering_CNMF CustomClinical CopyNumber_Clustering_CNMF CopyNumber_Gistic2_Postprocess_Focal Correlate_Clinical_vs_miRseq miRseq_Clustering_Consensus Correlate_molecularSubtype_vs_CopyNumber_Arm miRseq_Preprocess miRseq_Clustering_CNMF RPPA_Clustering_Consensus Pathway_FindEnrichedGenes Correlate_CopyNumber_vs_mRNA Mutation_CHASM Pathway_Paradigm Correlate_molecularSubtype_vs_Mutation Mutation Assessor Correlate_Clinical_vs_CopyNumber_Focal Correlate_Clinical_vs_Mutation Mutation_Significance 0 0 CopyNumber_Gistic2 Aggregate_Gene_Status Hotnet_Analysis Correlate_CopyNumber_vs_mRNAseq Correlate_CopyNumber_vs_miR Correlate_molecularSubtype_vs_CopyNumber_Focal

Correlate_Clinical_vs_CopyNumber_Arm

Correlate_Clinical_vs_mRNAseq

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

<u>INTEGRATION TESTING</u> must establish that (changes to) codes plays nice with rest of system.

VITAL to maintain production operation of Firehose "data factory"

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

INTEGRATION TESTING must establish that (changes to) codes plays nice with rest of system.

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

<u>INTEGRATION TESTING</u> must establish that (changes to) codes plays nice with rest of system.

Across datasets

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

<u>INTEGRATION TESTING</u> must establish that (changes to) codes plays nice with rest of system.

Across datasets With O's correctly wired to I's

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

INTEGRATION TESTING must establish that (changes to) codes plays nice with rest of system.

Across datasets With O's correctly wired to I's

Downstream dependents *correctly read* outputs

Individual researcher invoking THEIR code against THEIR data for THEIR paper, to establish that, in isolation, it runs to completion.

INTEGRATION TESTING must establish that (changes to) codes plays nice with rest of system.

Across datasets With O's correctly wired to I's Downstream dependents *correctly read* outputs And remainder of workflow runs to completion

Versioning & Automation are sacrosanct

Versioning & Automation are sacrosanct

• Otherwise no reproducibility

Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>

Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH code AND data are versioned

Babel problem

• Do not trust: version and verify
Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH <u>code</u> AND <u>data</u> are versioned

Babel problem

- Do not trust: version and verify
- Automation not just of pipelines:

Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH code AND data are versioned
- Do not trust: version and verify
- Automation not just of pipelines:
 - \checkmark but also tools used to create them

FH web services Hydrant

Babel problem

Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH code AND data are versioned
- Do not trust: version and verify
- Automation not just of pipelines:
 - \checkmark but also tools used to create them
 - \checkmark and reports generated from them

FH web services Hydrant

Babel problem

GDAC website

Versioning & Automation are sacrosanct

- Otherwise no reproducibility
- Or <u>algorithmic scalability</u>
- BOTH code AND data are versioned
- Do not trust: version and verify
- Automation not just of pipelines:
 - \checkmark but also tools used to create them
 - \checkmark and reports generated from them
 - \checkmark and data sources which feed them \square

GUIs alone ARE NOT GOOD ENOUGH for these latter tasks

Because PROCESS SCALABILITY matters too

Babel problem

FH web services Hydrant

GDAC website

DCC, dbGAP

Observation 4: A- not good enough

Suppose all TCGA moving parts run 90% efficient

Observation 4: A- not good enough

Suppose all TCGA moving parts run 90% efficient

After just 4 steps in life
of TCGA sample: $.9^4 = 66\%$ overall efficiencyAssume A = 95\% $.95^4 = 81\%$ And A⁺ = 99\% $.99^4 = 96\%$

Given that TCGA arguably largest/richest cancer data ever assembled

Given that TCGA arguably largest/richest cancer data ever assembled

Novel discoveries lurk in Firehose outputs

Given that TCGA arguably largest/richest cancer data ever assembled

CNMF clustering of Ovarian miR expression yielded 3 subtypes

One of which correlated to significantly longer survivability

Integrated genomic analyses of ovarian carcinoma TCGA Network, Nature, 2011

Novel discoveries lurk in Firehose outputs

Given that TCGA arguably largest/richest cancer data ever assembled

CNMF clustering of Ovarian miR expression yielded 3 subtypes

One of which correlated to significantly longer survivability

Integrated genomic analyses of ovarian carcinoma TCGA Network, Nature, 2011

Novel discoveries lurk in Firehose outputs

. Firehose for active research: low-hanging results waiting to be plucked

Firehose automatically mines entire suite of clinical params to identify statistically significant relationships with every TCGA datatype or aggregate (e.g. clusters) Firehose automatically mines entire suite of clinical params to identify statistically significant relationships with every TCGA datatype or aggregate (e.g. clusters)

The results, which e.g. include survival curves (when possible) for every TCGA disease, are posted openly on the Broad GDAC site in the form of biologist-friendly HTML reports Firehose automatically mines entire suite of clinical params to identify statistically significant relationships with every TCGA datatype or aggregate (e.g. clusters)

The results, which e.g. include survival curves (when possible) for every TCGA disease, are posted openly on the Broad GDAC site in the form of biologist-friendly HTML reports

Since automation is "free," these don't have to be 100% to establish potentially interesting signposts

Lung Squamous

Time to Death

	nPatients	nDeath	Duration Range (Median), Month
ALL	177	72	0.0 - 173.8 (16.6)
subtype1	44	18	0.2 - 115.6 (14.3)
subtype2	42	15	0.2 - 99.2 (23.0)
subtype3	52	19	0.0 - 173.8 (17.8)
subtype4	39	20	0.1 - 82.2 (8.8)

subtype1 (18/44) subtype2 (15/42) subtype3 (19/52) subtype4 (20/39)

2012_09_13 Analyses

'RPPA cHierClus subtypes' versus 'Time to Death' P value = 0.000346 (logrank test)

Much more low-hanging fruit, lurking in wait for set of willing eyes

<u>Summary</u>

Simplifying & Systematizing Science at Unprecedented Scales & Complexity

Fin